1
|
Williams RO, Clanchy FI, Huang YS, Tseng WY, Stone TW. TNFR2 signalling in inflammatory diseases. Best Pract Res Clin Rheumatol 2024; 38:101941. [PMID: 38538489 DOI: 10.1016/j.berh.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 09/02/2024]
Abstract
TNF signals via two receptors, TNFR1 and TNFR2, which play contrasting roles in immunity. Most of the pro-inflammatory effects of TNF are mediated by TNFR1, whereas TNFR2 is mainly involved in immune homeostasis and tissue healing, but also contributes to tumour progression. However, all currently available anti-TNF biologics inhibit signalling via both receptors and there is increasing interest in the development of selective inhibitors; TNFR1 inhibitors for autoimmune disease and TNFR2 inhibitors for cancer. It is hypothesised that selective inhibition of TNFR1 in autoimmune disease would alleviate inflammation and promote homeostasis by allowing TNFR2 signalling to proceed unimpeded. Validation of this concept would pave the way for the development and testing of TNF specific antagonists. Another therapeutic approach being explored is the use of TNFR2 specific agonists, which could be administered alone or in combination with a TNFR1 antagonist.
Collapse
Affiliation(s)
- Richard O Williams
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Felix Il Clanchy
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Yi-Shu Huang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Wen-Yi Tseng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Trevor W Stone
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| |
Collapse
|
2
|
Akiba H, Fujita J, Ise T, Nishiyama K, Miyata T, Kato T, Namba K, Ohno H, Kamada H, Nagata S, Tsumoto K. Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection. Commun Biol 2023; 6:987. [PMID: 37758868 PMCID: PMC10533564 DOI: 10.1038/s42003-023-05326-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional bivalent antibodies against cell surface receptors often initiate unwanted signal transduction by crosslinking two antigen molecules. Biparatopic antibodies (BpAbs) bind to two different epitopes on the same antigen, thus altering crosslinking ability. In this study, we develop BpAbs against tumor necrosis factor receptor 2 (TNFR2), which is an attractive immune checkpoint target. Using different pairs of antibody variable regions specific to topographically distinct TNFR2 epitopes, we successfully regulate the size of BpAb-TNFR2 immunocomplexes to result in controlled agonistic activities. Our series of results indicate that the relative positions of the two epitopes recognized by the BpAb are critical for controlling its signaling activity. One particular antagonist, Bp109-92, binds TNFR2 in a 1:1 manner without unwanted signal transduction, and its structural basis is determined using cryo-electron microscopy. This antagonist suppresses the proliferation of regulatory T cells expressing TNFR2. Therefore, the BpAb format would be useful in designing specific and distinct antibody functions.
Collapse
Affiliation(s)
- Hiroki Akiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoko Ise
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Kentaro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute of Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- RIKEN SPring-8 Center, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
- School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
3
|
Siegmund D, Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat Rev Rheumatol 2023; 19:576-591. [PMID: 37542139 DOI: 10.1038/s41584-023-01002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytokine TNF signals via two distinct receptors, TNF receptor 1 (TNFR1) and TNFR2, and is a central mediator of various immune-mediated diseases. Indeed, TNF-neutralizing biologic drugs have been in clinical use for the treatment of many inflammatory pathological conditions, including various rheumatic diseases, for decades. TNF has pleiotropic effects and can both promote and inhibit pro-inflammatory processes. The integrated net effect of TNF in vivo is a result of cytotoxic TNFR1 signalling and the stimulation of pro-inflammatory processes mediated by TNFR1 and TNFR2 and also TNFR2-mediated anti-inflammatory and tissue-protective activities. Inhibition of the beneficial activities of TNFR2 might explain why TNF-neutralizing drugs, although highly effective in some diseases, have limited benefit in the treatment of other TNF-associated pathological conditions (such as graft-versus-host disease) or even worsen the pathological condition (such as multiple sclerosis). Receptor-specific biologic drugs have the potential to tip the balance from TNFR1-mediated activities to TNFR2-mediated activities and enable the treatment of diseases that do not respond to current TNF inhibitors. Accordingly, a variety of reagents have been developed that either selectively inhibit TNFR1 or selectively activate TNFR2. Several of these reagents have shown promise in preclinical studies and are now in, or approaching, clinical trials.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Ortí-Casañ N, Boerema AS, Köpke K, Ebskamp A, Keijser J, Zhang Y, Chen T, Dolga AM, Broersen K, Fischer R, Pfizenmaier K, Kontermann RE, Eisel ULM. The TNFR1 antagonist Atrosimab reduces neuronal loss, glial activation and memory deficits in an acute mouse model of neurodegeneration. Sci Rep 2023; 13:10622. [PMID: 37391534 PMCID: PMC10313728 DOI: 10.1038/s41598-023-36846-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/11/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Ate S Boerema
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Applied Research Center, Van Hall Larenstein University of Applied Science, Leeuwarden, The Netherlands
| | - Karina Köpke
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Amber Ebskamp
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Keijser
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Tingting Chen
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Roman Fischer
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Pegoretti V, Bauer J, Fischer R, Paro I, Douwenga W, Kontermann RE, Pfizenmaier K, Houben E, Broux B, Hellings N, Baron W, Laman JD, Eisel ULM. Sequential treatment with a TNFR2 agonist and a TNFR1 antagonist improves outcomes in a humanized mouse model for MS. J Neuroinflammation 2023; 20:106. [PMID: 37138340 PMCID: PMC10157968 DOI: 10.1186/s12974-023-02785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Iskra Paro
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Centre Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelien Houben
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Bieke Broux
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Niels Hellings
- Neuroimmune Connections and Repair (NIC&R) Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Hasselt, Belgium
- University MS Centre, 3590, Hasselt/Pelt, Belgium
| | - Wia Baron
- Department Biomedical Sciences of Cells and Systems (BSCS), Section Molecular Neurobiology, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jon D Laman
- Department Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute of Evolutionary Life Science (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Vunnam N, Been M, Huber E, Paulson C, Szymonski S, Hackel BJ, Sachs JN. Discovery of a Non-competitive TNFR1 Antagonist Affibody with Picomolar Monovalent Potency That Does Not Affect TNFR2 Function. Mol Pharm 2023; 20:1884-1897. [PMID: 36897792 PMCID: PMC10849843 DOI: 10.1021/acs.molpharmaceut.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Tumor necrosis factor (TNF) is a key regulator of immune responses and plays a significant role in the initiation and maintenance of inflammation. Upregulation of TNF expression leads to several inflammatory diseases, such as Crohn's, ulcerative colitis, and rheumatoid arthritis. Despite the clinical success of anti-TNF treatments, the use of these therapies is limited because they can induce adverse side effects through inhibition of TNF biological activity, including blockade of TNF-induced immunosuppressive function of TNFR2. Using yeast display, we identified a synthetic affibody ligand (ABYTNFR1-1) with high binding affinity and specificity for TNFR1. Functional assays showed that the lead affibody potently inhibits TNF-induced NF-κB activation (IC50 of 0.23 nM) and, crucially, does not block the TNFR2 function. Additionally, ABYTNFR1-1 acts non-competitively─it does not block TNF binding or inhibit receptor-receptor interactions in pre-ligand-assembled dimers─thereby enhancing inhibitory robustness. The mechanism, monovalent potency, and affibody scaffold give this lead molecule uniquely strong potential as a therapeutic candidate for inflammatory diseases.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - MaryJane Been
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evan Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolyn Paulson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Szymonski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Wang X, Guo F, Zhang Y, Wang Z, Wang J, Luo R, Chu X, Zhao Y, Sun P. Dual-targeting inhibition of TNFR1 for alleviating rheumatoid arthritis by a novel composite nucleic acid nanodrug. Int J Pharm X 2023. [DOI: 10.1016/j.ijpx.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
8
|
Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Abdullah Ezzi SH, Kota VG, Abdulla Hasan Abdulla MH, Sun Z, Lu H. Alterations in bone fracture healing associated with TNFRSF signaling pathways. Front Pharmacol 2022; 13:905535. [PMID: 36324677 PMCID: PMC9621617 DOI: 10.3389/fphar.2022.905535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Bone fracture healing is a complex process involving various signaling pathways. It remains an unsolved issue the fast and optimal management of complex or multiple fractures in the field of orthopedics and rehabilitation. Bone fracture healing is largely a four-stage process, including initial hematoma formation, intramembrane ossification, chondrogenesis, and endochondral ossification followed by further bone remodeling. Many studies have reported the involvement of immune cells and cytokines in fracture healing. On the other hand, the Tumor Necrosis Factor (TNF) family and TNF receptor superfamily (TNFRSF) play a pivotal role in many physiological processes. The functions of the TNF family and TNFRSF in immune processes, tissue homeostasis, and cell differentiation have been extensively studied by many groups, and treatments targeting specific TNFRSF members are in progress. In terms of bone fracture management, it has been discovered that several members of TNFRSF have very distinct functions in different stages of fracture healing, including TNFR1, TNFR2, and receptor activator of nuclear factor kappa-B (RANK) pathways. More specifically, TNFR1 is associated with osteoclastogenesis and TNFR2 is associated with osteogenic differentiation, while RANK is in association with bone remodeling. In this review, we will discuss and summarize the involvement of members of TNFRSF including TNFR1, TNFR2, and Receptor activator of nuclear factor kappa-B (RANK) pathways in different stages of fracture healing and bone remodeling and the current treatment trend involving TNFRSF agonists and antagonists.
Collapse
Affiliation(s)
- Yanzhao Dong
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Zhenyu Sun
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Lu
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
- *Correspondence: Hui Lu,
| |
Collapse
|
9
|
Immunosuppressant Therapies in COVID-19: Is the TNF Axis an Alternative? Pharmaceuticals (Basel) 2022; 15:ph15050616. [PMID: 35631442 PMCID: PMC9147078 DOI: 10.3390/ph15050616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
The study of cytokine storm in COVID-19 has been having different edges in accordance with the knowledge of the disease. Various cytokines have been the focus, especially to define specific treatments; however, there are no conclusive results that fully support any of the options proposed for emergency treatment. One of the cytokines that requires a more exhaustive review is the tumor necrosis factor (TNF) and its receptors (TNFRs) as increased values of soluble formats for both TNFR1 and TNFR2 have been identified. TNF is a versatile cytokine with different impacts at the cellular level depending on the action form (transmembrane or soluble) and the receptor to which it is associated. In that sense, the triggered mechanisms can be diversified. Furthermore, there is the possibility of the joint action provided by synergism between one or more cytokines with TNF, where the detonation of combined cellular processes has been suggested. This review aims to discuss some roles of TNF and its receptors in the pro-inflammatory stage of COVID-19, understand its ways of action, and let to reposition this cytokine or some of its receptors as therapeutic targets.
Collapse
|
10
|
Zahid M, Busmail A, Penumetcha SS, Ahluwalia S, Irfan R, Khan SA, Rohit Reddy S, Vasquez Lopez ME, Mohammed L. Tumor Necrosis Factor Alpha Blockade and Multiple Sclerosis: Exploring New Avenues. Cureus 2021; 13:e18847. [PMID: 34804701 PMCID: PMC8597935 DOI: 10.7759/cureus.18847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/17/2021] [Indexed: 11/07/2022] Open
Abstract
Multiple sclerosis (MS) is the most common disabling disease of the central nervous system (CNS) with a progressive neurodegenerative pattern. It is characterized by demyelination of white matter in CNS and apoptosis of oligodendrocytes. Tumor necrosis factor (TNF) alpha is a major cytokine in the pathogenesis of MS. However, the failure of TNF alpha inhibitors in preclinical and clinical trials disapproved of their use in MS patients. Nevertheless, failures and misses sometimes open avenues for new hits. In the later years, it was discovered that TNF signaling is mediated via two different receptors, TNFR1 and TNFR2, both of which have paradoxical effects. TNFR1 mediates demyelination and apoptosis, while TNFR2 promotes remyelination and neuroprotection. This explained the cause of the failure of non-selective TNF alpha-blockers in MS. It also enlightened researchers that repurposing the previously formulated non-selective TNF alpha-blockers using a receptor-selective approach could lead to discovering novel biologic agents with a broader spectrum of indications and better safety profiles. This review focuses on a novel premier TNFR1 blocker, atrosab, which has been tested in animal models of MS, experimental autoimmune encephalomyelitis (EAE), where it demonstrated a reduction in symptom severity. The early promise shown by atrosab in preclinical studies has given us hope to find another revolutionary drug for MS in the future. Clinical trials, which will finally decide whether this drug can be used as a better therapeutic agent for MS or not, are still going on, but currently, there is no approved evidence regarding efficacy of these agents in treating MS.
Collapse
Affiliation(s)
- Maryam Zahid
- Research & Development, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alberto Busmail
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Sri Penumetcha
- Internal Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Saher Ahluwalia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rejja Irfan
- Internal Medicine, Shalamar Medical & Dental College, Lahore, PAK.,Internal Medicine, Brooklyn Medical Services, New York, USA.,Research and Development, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sawleha Arshi Khan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Rohit Reddy
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA.,School of Medicine, Armed Forces Medical College, Pune, IND.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Elisa Vasquez Lopez
- Research and Development, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
11
|
Richter F, Williams SK, John K, Huber C, Vaslin C, Zanker H, Fairless R, Pichi K, Marhenke S, Vogel A, Dhaen MA, Herrmann S, Herrmann A, Pfizenmaier K, Bantel H, Diem R, Kontermann RE, Fischer R. The TNFR1 Antagonist Atrosimab Is Therapeutic in Mouse Models of Acute and Chronic Inflammation. Front Immunol 2021; 12:705485. [PMID: 34305946 PMCID: PMC8294390 DOI: 10.3389/fimmu.2021.705485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutics that block tumor necrosis factor (TNF), and thus activation of TNF receptor 1 (TNFR1) and TNFR2, are clinically used to treat inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, TNFR1 and TNFR2 work antithetically to balance immune responses involved in inflammatory diseases. In particular, TNFR1 promotes inflammation and tissue degeneration, whereas TNFR2 contributes to immune modulation and tissue regeneration. We, therefore, have developed the monovalent antagonistic anti-TNFR1 antibody derivative Atrosimab to selectively block TNFR1 signaling, while leaving TNFR2 signaling unaffected. Here, we describe that Atrosimab is highly stable at different storage temperatures and demonstrate its therapeutic efficacy in mouse models of acute and chronic inflammation, including experimental arthritis, non-alcoholic steatohepatitis (NASH) and experimental autoimmune encephalomyelitis (EAE). Our data support the hypothesis that it is sufficient to block TNFR1 signaling, while leaving immune modulatory and regenerative responses via TNFR2 intact, to induce therapeutic effects. Collectively, we demonstrate the therapeutic potential of the human TNFR1 antagonist Atrosimab for treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), German Cancer Research Center Deutsche Krebsforschungszentrum (DFKZ), Heidelberg, Germany
| | - Katharina John
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Carina Huber
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Camille Vaslin
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Henri Zanker
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), German Cancer Research Center Deutsche Krebsforschungszentrum (DFKZ), Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), German Cancer Research Center Deutsche Krebsforschungszentrum (DFKZ), Heidelberg, Germany
| | - Kira Pichi
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), German Cancer Research Center Deutsche Krebsforschungszentrum (DFKZ), Heidelberg, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), German Cancer Research Center Deutsche Krebsforschungszentrum (DFKZ), Heidelberg, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
13
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Rau A, Lieb WS, Seifert O, Honer J, Birnstock D, Richter F, Aschmoneit N, Olayioye MA, Kontermann RE. Inhibition of Tumor Cell Growth and Cancer Stem Cell Expansion by a Bispecific Antibody Targeting EGFR and HER3. Mol Cancer Ther 2020; 19:1474-1485. [DOI: 10.1158/1535-7163.mct-19-1095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
|
15
|
Therapeutic potential of TNFα inhibitors in chronic inflammatory disorders: Past and future. Genes Dis 2020; 8:38-47. [PMID: 33569512 PMCID: PMC7859422 DOI: 10.1016/j.gendis.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the past 20 years, patients with rheumatoid arthritis (RA), Crohn's disease (CD), and other immune diseases have witnessed the impact of a great treatment advance with the availability of biological TNFα inhibitors. With 5 approved anti-TNFα biologics on the market and soon available biosimilars, patients have more treatment options and have benefited from understanding the biology of TNFα. Nevertheless, many unmet needs remain for people living with TNFα-related diseases, namely some side effects and tolerance of current anti-TNFα biologics and resistance to therapies. Furthermore, common diseases such as osteoarthritis and back/neck pain may respond to anti-TNFα therapies at early onset of symptoms. Development of new TNFα inhibitors focusing on TNFR1 specific inhibitors, preferably small molecules that can be delivered orally, is much needed.
Collapse
|