1
|
Gavade A, Nagraj AK, Patel R, Pais R, Dhanure P, Scheele J, Seiz W, Patil J. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J 2024; 43:405-424. [PMID: 38724751 DOI: 10.1007/s10930-024-10201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.
Collapse
Affiliation(s)
- Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pratiksha Dhanure
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | | | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
2
|
Resa-Infante P, Erkizia I, Muñiz-Trabudua X, Linty F, Bentlage AEH, Perez-Zsolt D, Muñoz-Basagoiti J, Raïch-Regué D, Izquierdo-Useros N, Rispens T, Vidarsson G, Martinez-Picado J. Preclinical development of humanized monoclonal antibodies against CD169 as a broad antiviral therapeutic strategy. Biomed Pharmacother 2024; 175:116726. [PMID: 38754263 DOI: 10.1016/j.biopha.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
New therapies to treat or prevent viral infections are essential, as recently observed during the COVID-19 pandemic. Here, we propose a therapeutic strategy based on monoclonal antibodies that block the specific interaction between the host receptor Siglec-1/CD169 and gangliosides embedded in the viral envelope. Antibodies are an excellent option for treating infectious diseases based on their high specificity, strong targeting affinity, and relatively low toxicity. Through a process of humanization, we optimized monoclonal antibodies to eliminate sequence liabilities and performed biophysical characterization. We demonstrated that they maintain their ability to block viral entry into myeloid cells. These molecular improvements during the discovery stage are key if we are to maximize efforts to develop new therapeutic strategies. Humanized monoclonal antibodies targeting CD169 provide new opportunities in the treatment of infections caused by ganglioside-containing enveloped viruses, which pose a constant threat to human health. In contrast with current neutralizing antibodies that bind antigens on the infectious particle, our antibodies can prevent several types of enveloped viruses interacting with host cells because they target the host CD169 protein, thus becoming a potential pan-antiviral therapy.
Collapse
Affiliation(s)
- Patricia Resa-Infante
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic 08500, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona 08916, Spain; CIBERINFEC, Madrid 28029, Spain.
| | - Itziar Erkizia
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | | | - Federica Linty
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Arthur E H Bentlage
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | | | | | | | | | - Theo Rispens
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam 1066 CX, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Javier Martinez-Picado
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic 08500, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona 08916, Spain; CIBERINFEC, Madrid 28029, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
3
|
Mieczkowski C, Zhang X, Lee D, Nguyen K, Lv W, Wang Y, Zhang Y, Way J, Gries JM. Blueprint for antibody biologics developability. MAbs 2023; 15:2185924. [PMID: 36880643 PMCID: PMC10012935 DOI: 10.1080/19420862.2023.2185924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Large-molecule antibody biologics have revolutionized medicine owing to their superior target specificity, pharmacokinetic and pharmacodynamic properties, safety and toxicity profiles, and amenability to versatile engineering. In this review, we focus on preclinical antibody developability, including its definition, scope, and key activities from hit to lead optimization and selection. This includes generation, computational and in silico approaches, molecular engineering, production, analytical and biophysical characterization, stability and forced degradation studies, and process and formulation assessments. More recently, it is apparent these activities not only affect lead selection and manufacturability, but ultimately correlate with clinical progression and success. Emerging developability workflows and strategies are explored as part of a blueprint for developability success that includes an overview of the four major molecular properties that affect all developability outcomes: 1) conformational, 2) chemical, 3) colloidal, and 4) other interactions. We also examine risk assessment and mitigation strategies that increase the likelihood of success for moving the right candidate into the clinic.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Xuejin Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Dana Lee
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Khanh Nguyen
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Wei Lv
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yanling Wang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yue Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jackie Way
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jean-Michel Gries
- President, Discovery Research, Hengenix Biotech, Inc, Milpitas, CA, USA
| |
Collapse
|
4
|
Hicks D, Baehr C, Silva-Ortiz P, Khaimraj A, Luengas D, Hamid FA, Pravetoni M. Advancing humanized monoclonal antibody for counteracting fentanyl toxicity towards clinical development. Hum Vaccin Immunother 2022; 18:2122507. [PMID: 36194773 PMCID: PMC9746415 DOI: 10.1080/21645515.2022.2122507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022] Open
Abstract
Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.
Collapse
Affiliation(s)
- Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pedro Silva-Ortiz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fatima A. Hamid
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- School of Medicine, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Li S, Shui Y, Ma J, Yuan Y, Jiang W, Xu C, Wang L, Ren Y, Deng B, Zhang W, Li Z. Antimicrobial activity of CT-K3K7, a modified peptide by lysine substitutions from ctry2459 - A Chaerilus tryznai scorpion venom peptide. Toxicon 2022; 218:88-98. [PMID: 36113685 DOI: 10.1016/j.toxicon.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) have started to garner more interest as novel antimicrobial agents. The scorpion venom peptide ctry2459 was modified to CT-K3K7 by lysine substitutions at the 3rd and 7th positions to increase the cationic properties. We discovered that the modified peptides CT-K3K7 had improved antibacterial activity, higher thermal stability, as well as lower hemolytic activity. It can kill S. aureus and P. aeruginosa rapidly, and reduce the production of biofilm and live bacterial residues in biofilm in vitro. CT-K3K7 has also been demonstrated to decrease bacterial counts, abscess area, and inflammatory cell infiltration in the mouse subcutaneous abscess models that were duplicated by S. aureus and P. aeruginosa. CT-K3K7 has difficulty in inducing S. aureus and P. aeruginosa to develop drug resistance, which may be related to the bactericidal properties. CT-K3K7 increases cationic properties by lysine substitutions can increase the electrostatic force between the peptides and the bacterial surface, which can lead to an increase in bacterial membrane permeability and DNA binding. In conclusion, the modified peptide CT-K3K7 enhances the antimicrobial activity and can be a novel antimicrobial agent candidate for the treatment of infections by S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yingbin Shui
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiayue Ma
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenxing Jiang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lejing Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yongjing Ren
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Abstract
Monoclonal antibodies are susceptible to chemical and enzymatic modifications during manufacturing, storage, and shipping. Deamidation, isomerization, and oxidation can compromise the potency, efficacy, and safety of therapeutic antibodies. Recently, in silico tools have been used to identify liable residues and engineer antibodies with better chemical stability. Computational approaches for predicting deamidation, isomerization, oxidation, glycation, carbonylation, sulfation, and hydroxylation are reviewed here. Although liable motifs have been used to improve the chemical stability of antibodies, the accuracy of in silico predictions can be improved using machine learning and molecular dynamic simulations. In addition, there are opportunities to improve predictions for specific stress conditions, develop in silico prediction of novel modifications in antibodies, and predict the impact of modifications on physical stability and antigen-binding.
Collapse
Affiliation(s)
- Shabdita Vatsa
- Development Services, Lonza Biologics, Singapore, Singapore
| |
Collapse
|
7
|
Gupta S, Jiskoot W, Schöneich C, Rathore AS. Oxidation and Deamidation of Monoclonal Antibody Products: Potential Impact on Stability, Biological Activity, and Efficacy. J Pharm Sci 2021; 111:903-918. [PMID: 34890632 DOI: 10.1016/j.xphs.2021.11.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
The role in human health of therapeutic proteins in general, and monoclonal antibodies (mAbs) in particular, has been significant and is continuously evolving. A considerable amount of time and resources are invested first in mAb product development and then in clinical examination of the product. Physical and chemical degradation can occur during manufacturing, processing, storage, handling, and administration. Therapeutic proteins may undergo various chemical degradation processes, including oxidation, deamidation, isomerization, hydrolysis, deglycosylation, racemization, disulfide bond breakage and formation, Maillard reaction, and β-elimination. Oxidation and deamidation are the most common chemical degradation processes of mAbs, which may result in changes in physical properties, such as hydrophobicity, charge, secondary or/and tertiary structure, and may lower the thermodynamic or kinetic barrier to unfold. This may predispose the product to aggregation and other chemical modifications, which can alter the binding affinity, half-life, and efficacy of the product. This review summarizes major findings from the past decade on the impact of oxidation and deamidation on the stability, biological activity, and efficacy of mAb products. Mechanisms of action, influencing factors, characterization tools, clinical impact, and risk mitigation strategies have been addressed.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
8
|
Zhou Q, Jaworski J, Zhou Y, Valente D, Cotton J, Honey D, Boudanova E, Beninga J, Rao E, Wei R, Mauriac C, Pan C, Park A, Qiu H. Engineered Fc-glycosylation switch to eliminate antibody effector function. MAbs 2021; 12:1814583. [PMID: 32892677 PMCID: PMC7531572 DOI: 10.1080/19420862.2020.1814583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antibodies mediate effector functions through Fcγ receptor (FcγR) interactions and complement activation, causing cytokine release, degranulation, phagocytosis, and cell death. They are often undesired for development of therapeutic antibodies where only antigen binding or neutralization would be ideal. Effector elimination has been successful with extensive mutagenesis, but these approaches can potentially lead to manufacturability and immunogenicity issues. By switching the native glycosylation site from position 297 to 298, we created alternative antibody glycosylation variants in the receptor interaction interface as a novel strategy to eliminate the effector functions. The engineered glycosylation site at Asn298 was confirmed by SDS-PAGE, mass spectrometry, and X-ray crystallography (PDB code 6X3I). The lead NNAS mutant (S298N/T299A/Y300S) shows no detectable binding to mouse or human FcγRs by surface plasmon resonance analyses. The effector functions of the mutant are completely eliminated when measured in antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. In vivo, the NNAS mutant made on an antibody against a human lymphocyte antigen does not deplete T cells or B cells in transgenic mice, in contrast to wild-type antibody. Structural study confirms the successful glycosylation switch to the engineered Asn298 site. The engineered glycosylation would clash with approaching FcγRs based on reported Fc-FcγR co-crystal structures. In addition, the NNAS mutants of multiple antibodies retain binding to antigens and neonatal Fc receptor, exhibit comparable purification yields and thermal stability, and display normal circulation half-life in mice and non-human primate. Our work provides a novel approach for generating therapeutic antibodies devoid of any ADCC and CDC activities with potentially lower immunogenicity.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | - Yanfeng Zhou
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | | | - Denise Honey
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | | | - Ercole Rao
- Biologics Research, Sanofi , Frankfurt, Germany
| | - Ronnie Wei
- Biologics Research, Sanofi , Framingham, MA, USA
| | | | - Clark Pan
- Biologics Research, Sanofi , Framingham, MA, USA
| | - Anna Park
- Biologics Research, Sanofi , Framingham, MA, USA
| | - Huawei Qiu
- Biologics Research, Sanofi , Framingham, MA, USA
| |
Collapse
|
9
|
Riahi S, Lee JH, Wei S, Cost R, Masiero A, Prades C, Olfati-Saber R, Wendt M, Park A, Qiu Y, Zhou Y. Application of an integrated computational antibody engineering platform to design SARS-CoV-2 neutralizers. Antib Ther 2021; 4:109-122. [PMID: 34396040 PMCID: PMC8344454 DOI: 10.1093/abt/tbab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
As the COVID-19 pandemic continues to spread, hundreds of new initiatives including
studies on existing medicines are running to fight the disease. To deliver a potentially
immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new
collaborations and ways of sharing are required to create as many paths forward as
possible. Here, we leverage our expertise in computational antibody engineering to
rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and
share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing
antibodies, m396, 80R and CR-3022 were chosen as templates due to their diversified
epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except
for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain
(RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody
engineering platform to improve their binding affinity to SARS-CoV-2 and developability
profiles. The selected top mutations were ensembled into a focused library for each
antibody for further screening. In addition, we convert the selected binders with
different epitopes into the trispecific format, aiming to increase potency and to prevent
mutational escape. Lastly, to avoid antibody-induced virus activation or enhancement, we
suggest application of NNAS and DQ mutations to the Fc region to eliminate effector
functions and extend half-life.
Collapse
Affiliation(s)
- Saleh Riahi
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | - Jae Hyeon Lee
- Data & Data Science, Sanofi, Cambridge, MA, United States
| | - Shuai Wei
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | - Robert Cost
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | | | | | | | - Maria Wendt
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | - Anna Park
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | - Yu Qiu
- Large Molecule Research, Sanofi, Framingham, MA, United States
| | - Yanfeng Zhou
- Large Molecule Research, Sanofi, Framingham, MA, United States
| |
Collapse
|
10
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
11
|
Zhu HJ, Liu D, Tran VP, Wu Z, Jiang K, Zhu H, Zhang J, Gibbons C, Xue B, Shi H, Wang PG. N-Linked Glycosylation Prevents Deamidation of Glycopeptide and Glycoprotein. ACS Chem Biol 2020; 15:3197-3205. [PMID: 33270417 DOI: 10.1021/acschembio.0c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deamidation has been recognized as a common spontaneous pathway of protein degradation and a prevalent concern in the pharmaceutical industry; deamidation caused the reduction of protein/peptide drug efficacy and shelf life in several cases. More importantly, deamidation of physiological proteins is related to several human diseases and considered a "timer" for the diseases. N-linked glycosylation has a variety of significant biological functions, and it interestingly occurs right on the deamidation site-asparagine. It has been perceived that N-glycosylation could prevent deamidation, but experimental support is still lacking for clearly understanding the role of N-glycosylation on deamidation. Our results presented that deamidation is prevented by naturally occurring N-linked glycosylation. Glycopeptides and corresponding nonglycosylated peptides were used to compare their deamidation rates. All the nonglycosylated peptides have different half-lives ranging from one to 20 days, for the corresponding glycosylated peptides; all the results showed that the deamidation reaction was significantly reduced by the introduction of N-linked glycosylation. A glycoprotein, RNase B, also showed a significantly elongated deamidation half-life compared to nonglycosylated protein RNase A. At last, N-linked glycosylation on INGAP-P, a therapeutic peptide, increased the deamidation half-life of INGAP-P as well as its therapeutic potency.
Collapse
Affiliation(s)
- Hailiang Joshua Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Vy P. Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuan Jiang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Scientific Best Practices for Primary Sequence Confirmation and Sequence Variant Analysis in the Development of Therapeutic Proteins. J Pharm Sci 2020; 110:619-626. [PMID: 33212163 DOI: 10.1016/j.xphs.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
In this commentary, we will provide a high-level introduction into LC-MS product characterization methodologies deployed throughout biopharmaceutical development. The ICH guidelines for early and late phase filings is broad so that it is applicable to diverse biotherapeutic products in the clinic and industry pipelines. This commentary is meant to address areas of protein primary sequence confirmation and sequence variant analysis where ambiguity exists in industry on the specific scope of work that is needed to fulfill the general guidance that is given in sections Q5b and Q6b. This commentary highlights the discussion and outcomes of two recent workshops centering on the application of LC-MS to primary structure confirmation and sequence variant analysis (SVA) that were held at the 2018 and 2019 CASSS Practical Applications of Mass Spectrometry in the Biotechnology Industry Symposia in San Francisco, CA and Chicago, IL, respectively. Recommendations from the conferences fall into two distinct but related areas; 1) consolidation of opinions amongst industry stakeholders on the specific definitions of peptide mapping and peptide sequencing for primary structure confirmation and the technologies used for both, as they relate to regulatory expectations and submissions and 2) development of fit-for-purpose strategy to define appropriate assay controls in SVA experiments.
Collapse
|
13
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
14
|
Vimer S, Ben-Nissan G, Sharon M. Direct characterization of overproduced proteins by native mass spectrometry. Nat Protoc 2020; 15:236-265. [PMID: 31942081 DOI: 10.1038/s41596-019-0233-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Proteins derived by recombinant technologies must be characterized to ensure quality, consistency and optimal production. These properties are usually assayed following purification procedures that are time consuming and labor intensive. Here, we describe a native mass spectrometry (MS) approach, direct-MS, for rapid characterization of intact overexpressed proteins immediately from crude samples. In this protocol, we discuss the multiple applications of the method and outline the necessary steps required for sample preparation, data collection and interpretation of results. We begin with the sample preparation workflows, which are relevant for recombinant proteins produced within bacteria, those analyzed straight from crude cell lysate, and secreted proteins generated in eukaryotic expression systems that are assessed directly from the growth culture medium. We continue with the mass acquisition steps that enable immediate definition of properties such as expressibility, solubility, assembly state, folding, overall structure, stability, post-translational modifications and associations with biomolecules. We demonstrate the applicability of the method by presenting the characterization of a computationally designed toxin-antitoxin heterodimer, activity and protein-interaction determination of a regulatory protein and detailed glycosylation analysis of a designed intact antibody. Overall, we describe a simple and rapid protocol that is relevant to both prokaryotic and eukaryotic expression systems and can be carried out on multiple mass spectrometers, such as Orbitrap and quadrupole time-of-flight (QTOF)-based mass spectroscopy platforms, that enable intact protein detection. The procedure takes from 30 min to several hours, from sample collection to data acquisition, depending on the depth of MS analysis.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation. J Pharm Sci 2020; 109:656-669. [DOI: 10.1016/j.xphs.2019.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
|
16
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
17
|
A generic method for intact and subunit level characterization of mAb charge variants by native mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1133:121814. [DOI: 10.1016/j.jchromb.2019.121814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
|