1
|
Barlow KA, Battles MB, Brown ME, Canfield K, Lu X, Lynaugh H, Morrill M, Rappazzo CG, Reyes SP, Sandberg C, Sharkey B, Strong C, Zhao J, Sivasubramanian A. Design of orthogonal constant domain interfaces to aid proper heavy/light chain pairing of bispecific antibodies. MAbs 2025; 17:2479531. [PMID: 40126074 PMCID: PMC11934185 DOI: 10.1080/19420862.2025.2479531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
The correct pairing of cognate heavy and light chains is critical to the efficient manufacturing of IgG-like bispecific antibodies (bsAbs) from a single host cell. We present a general solution for the elimination of heavy chain (HC):light chain (LC) mispairs in bsAbs with κ LCs via the use of two orthogonal constant domain (CH1:Cκ ) interfaces comprising computationally designed amino acid substitutions. Substitutions were designed by Rosetta to introduce novel hydrogen bond (H-bond) networks at the CH1:Cκ interface, followed by Rosetta energy calculations to identify designs with enhanced pairing specificity and interface stability. Our final design, featuring a total of 11 amino acid substitutions across two Fab constant regions, was tested on a set of six IgG-like bsAbs featuring a diverse set of unmodified human antibody variable domains. Purity assessments showed near-complete elimination of LC mispairs, including in cases with high baseline mispairing with wild-type constant domains. The engineered bsAbs broadly recapitulated the antigen-binding and biophysical developability properties of their monospecific counterparts and no adverse immunogenicity signal was identified by an in vitro assay. Fab crystal structures containing engineered constant domain interfaces revealed no major perturbations relative to the wild-type coordinates and validated the presence of the designed hydrogen bond interactions. Our work enables the facile assembly of independently discovered IgG-like bispecific antibodies in a single-cell host and demonstrates a streamlined and generalizable computational and experimental workflow for redesigning conserved protein:protein interfaces.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Lu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | | | | | | | | | | - Beth Sharkey
- High-Throughput Expression, Adimab, Lebanon, NH, USA
| | | | | | - Arvind Sivasubramanian
- Computational Biology, Adimab, Mountain View, CA, USA
- Platform Technologies, Adimab, Lebanon, NH, USA
| |
Collapse
|
2
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2025; 125:194-206. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Sun ZY, Liang T, Zhang Y, Hou G, Chu X, Hou JZ, Li W, Xie XQ, Feng Z. Structural insight into CD20/CD3-bispecific antibodies by molecular modeling. Comput Biol Med 2025; 185:109497. [PMID: 39674067 DOI: 10.1016/j.compbiomed.2024.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Non-Hodgkin's Lymphoma (NHL) remains a significant challenge in hematology, with chemotherapy and radiation therapy as conventional treatment options, albeit with limitations such as adverse effects. Immunotherapy, particularly bispecific antibodies (BsAbs) T cell engagers (TCEs), has emerged as a promising approach. Despite their potential, TCEs pose challenges, including adverse events like cytokine release syndrome. Understanding the structural details of TCEs and their interactions with target proteins is crucial for optimizing their therapeutic efficacy and toxicity. In this study, we further developed our protocol MCCS-Docker for protein-protein interactions and applied it to investigate the structural intricacies of CD3 interactions with therapeutic antibodies such as OKT3, UCHT1, Mosunetuzumab, Odronextumab, Glofitamab, and Epcoritamab using computational modeling techniques. Our analysis not only approved the effectiveness of our updated MCCS-Docker protocol but also revealed detailed binding interactions between the BsAbs and CD3, elucidating key residues of Tyrosine and Asparagine in the antibodies involved in the binding interface. Molecular dynamics simulations validated the stability of these interactions over time, confirming the reliability of the binding poses generated from docking studies. Overall, our study offered a novel method to predict critical residues in protein-protein interactions and enhanced the understanding of the structural determinants governing BsAb interactions with target proteins, offering valuable insights for designing and optimizing immunotherapeutic agents for NHL and related hematologic malignancies.
Collapse
Affiliation(s)
- Ze-Yu Sun
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Yiyang Zhang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - GanQian Hou
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Xiaojie Chu
- Department of Medicine, Center for Antibody Therapeutics, Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Jing-Zhou Hou
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA15232, United States.
| | - Wei Li
- Department of Medicine, Center for Antibody Therapeutics, Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
4
|
Sanou G, Manso T, Todorov K, Giudicelli V, Duroux P, Kossida S. IMGT/mAb-KG: the knowledge graph for therapeutic monoclonal antibodies. Front Immunol 2024; 15:1393839. [PMID: 38975336 PMCID: PMC11225432 DOI: 10.3389/fimmu.2024.1393839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Therapeutic monoclonal antibodies (mAbs) have demonstrated promising outcomes in diverse clinical indications, including but not limited to graft rejection, cancer, and autoimmune diseases lately.Recognizing the crucial need for the scientific community to quickly and easily access dependable information on monoclonal antibodies (mAbs), IMGT®, the international ImMunoGeneTics information system®, provides a unique and invaluable resource: IMGT/mAb-DB, a comprehensive database of therapeutic mAbs, accessible via a user-friendly web interface. However, this approach restricts more sophisticated queries and segregates information from other databases. Methods To connect IMGT/mAb-DB with the rest of the IMGT databases, we created IMGT/mAb-KG, a knowledge graph for therapeutic monoclonal antibodies connected to IMGT structures and genomics databases. IMGT/mAb-KG is developed using the most effective methodologies and standards of semantic web and acquires data from IMGT/mAb-DB. Concerning interoperability, IMGT/mAb-KG reuses terms from biomedical resources and is connected to related resources. Results and discussion In February 2024, IMGT/mAb-KG, encompassing a total of 139,629 triplets, provides access to 1,489 mAbs, approximately 500 targets, and over 500 clinical indications. It offers detailed insights into the mechanisms of action of mAbs, their construction, and their various products and associated studies. Linked to other resources such as Thera-SAbDab (Therapeutic Structural Antibody Database), PharmGKB (a comprehensive resource curating knowledge on the impact of genetic variation on drug response), PubMed, and HGNC (HUGO Gene Nomenclature Committee), IMGT/mAb-KG is an essential resource for mAb development. A user-friendly web interface facilitates the exploration and analyse of the content of IMGT/mAb-KG.
Collapse
Affiliation(s)
- Gaoussou Sanou
- The International ImMunoGeneTics Information System (IMGT), National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
- Montpellier Laboratory for Computer Science, Robotics and Microelectronics (LIRMM), University of Montpellier, National Center for Scientific Research (CNRS), Montpellier, France
| | - Taciana Manso
- The International ImMunoGeneTics Information System (IMGT), National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Konstantin Todorov
- Montpellier Laboratory for Computer Science, Robotics and Microelectronics (LIRMM), University of Montpellier, National Center for Scientific Research (CNRS), Montpellier, France
| | - Véronique Giudicelli
- The International ImMunoGeneTics Information System (IMGT), National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Patrice Duroux
- The International ImMunoGeneTics Information System (IMGT), National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Sofia Kossida
- The International ImMunoGeneTics Information System (IMGT), National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| |
Collapse
|
5
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Koga H, Kuroi H, Hirano R, Hirayama H, Nabuchi Y, Kuramochi T. Rapid Generation of Murine Bispecific Antibodies Using FAST-Ig TM for Preclinical Screening of HER2/CD3 T-Cell Engagers. Antibodies (Basel) 2024; 13:3. [PMID: 38247567 PMCID: PMC10801562 DOI: 10.3390/antib13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Bispecific antibodies (BsAbs) can bind to two different antigens, enabling therapeutic concepts that cannot be achieved with monoclonal antibodies. Immuno-competent mice are essential for validating drug discovery concepts, necessitating the development of surrogate mouse BsAbs. In this study, we explored the potential of FAST-IgTM, a previously reported BsAb technology, for mouse BsAb production. We investigated charge-based orthogonal Fab mutations to facilitate the correct assembly of heavy and light chains of mouse antibodies and employed knobs-into-holes mutations to facilitate the heterodimerization of heavy chains. We combined five anti-CD3 and two anti-HER2 antibodies in mouse IgG1 and IgG2a subclasses. These 20 BsAbs were analyzed using mass spectrometry or ion exchange chromatography to calculate the percentages of BsAbs with correct chain pairing (BsAb yields). Using FAST-Ig, 19 out of the 20 BsAbs demonstrated BsAb yields of 90% or higher after simple protein A purification from transiently expressed antibodies in Expi293F cells. Importantly, the mouse BsAbs maintained their fundamental physicochemical properties and affinity against each antigen. A Jurkat NFAT-luciferase reporter cell assay demonstrated the combined effects of epitope, affinity, and subclasses. Our findings highlight the potential of FAST-Ig technology for efficiently generating mouse BsAbs for preclinical studies.
Collapse
Affiliation(s)
- Hikaru Koga
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
8
|
McCue AC, Demarest SJ, Froning KJ, Hickey MJ, Antonysamy S, Kuhlman B. Engineering a tumor-selective prodrug T-cell engager bispecific antibody for safer immunotherapy. MAbs 2024; 16:2373325. [PMID: 38962811 PMCID: PMC11225918 DOI: 10.1080/19420862.2024.2373325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
T-cell engaging (TCE) bispecific antibodies are potent drugs that trigger the immune system to eliminate cancer cells, but administration can be accompanied by toxic side effects that limit dosing. TCEs function by binding to cell surface receptors on T cells, frequently CD3, with one arm of the bispecific antibody while the other arm binds to cell surface antigens on cancer cells. On-target, off-tumor toxicity can arise when the target antigen is also present on healthy cells. The toxicity of TCEs may be ameliorated through the use of pro-drug forms of the TCE, which are not fully functional until recruited to the tumor microenvironment. This can be accomplished by masking the anti-CD3 arm of the TCE with an autoinhibitory motif that is released by tumor-enriched proteases. Here, we solve the crystal structure of the antigen-binding fragment of a novel anti-CD3 antibody, E10, in complex with its epitope from CD3 and use this information to engineer a masked form of the antibody that can activate by the tumor-enriched protease matrix metalloproteinase 2 (MMP-2). We demonstrate with binding experiments and in vitro T-cell activation and killing assays that our designed prodrug TCE is capable of tumor-selective T-cell activity that is dependent upon MMP-2. Furthermore, we demonstrate that a similar masking strategy can be used to create a pro-drug form of the frequently used anti-CD3 antibody SP34. This study showcases an approach to developing immune-modulating therapeutics that prioritizes safety and has the potential to advance cancer immunotherapy treatment strategies.
Collapse
Affiliation(s)
- Amelia C. McCue
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Karen J. Froning
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, USA
| | - Michael J. Hickey
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, USA
| | | | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Pejchal R, Cooper AB, Brown ME, Vásquez M, Krauland EM. Profiling the Biophysical Developability Properties of Common IgG1 Fc Effector Silencing Variants. Antibodies (Basel) 2023; 12:54. [PMID: 37753968 PMCID: PMC10526015 DOI: 10.3390/antib12030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the constant region (Fc) to Fcγ receptors (FcγR), which allow immune cells to attack and kill target cells using a variety of mechanisms. However, for some applications, including T-cell-engaging bispecifics, this effector function is typically undesired. Mutations within the lower hinge and the second constant domain (CH2) of IgG1 that comprise the FcγR binding interface reduce or eliminate effector function ("Fc silencing") while retaining binding to the neonatal Fc receptor (FcRn), important for normal antibody pharmacokinetics (PKs). Comprehensive profiling of biophysical developability properties would benefit the choice of constant region variants for development. Here, we produce a large panel of representative mutations previously described in the literature and in many cases in clinical or approved molecules, generate select combinations thereof, and characterize their binding and biophysical properties. We find that some commonly used CH2 mutations, including D265A and P331S, are effective in reducing binding to FcγR but significantly reduce stability, promoting aggregation, particularly under acidic conditions commonly employed in manufacturing. We highlight mutation sets that are particularly effective for eliminating Fc effector function with the retention of WT-like stability, including L234A, L235A, and S267K (LALA-S267K), L234A, L235E, and S267K (LALE-S267K), L234A, L235A, and P329A (LALA-P329A), and L234A, L235E, and P329G (LALE-P329G).
Collapse
Affiliation(s)
- Robert Pejchal
- Adimab LLC, Lebanon, NH 03766, USA; (M.E.B.); (M.V.); (E.M.K.)
| | | | | | | | | |
Collapse
|