1
|
Lijalem YG, Gab-Allah MA, Yu H, Choi K, Kim B. Development of a corn flour certified reference material for the accurate determination of zearalenone. Anal Bioanal Chem 2024; 416:3173-3183. [PMID: 38568232 DOI: 10.1007/s00216-024-05265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
A certified reference material (CRM, KRISS 108-01-002) for zearalenone in corn flour was developed to assure reliable and accurate measurements in testing laboratories. Commercially available corn flour underwent freeze-drying, pulverization, sieving, and homogenization. The final product was packed in amber bottles, approximately 14 g per unit, and preserved at -70 °C. 13C18-Zearalenone was used as an internal standard (IS) for the certification of zearalenone by isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC‒MS/MS) and for the analysis of α-zearalenol, β-zearalenol, and zearalanone by LC‒MS/MS. The prepared CRM was sufficiently homogeneous, as the among-unit relative standard deviation for each mycotoxin ranged from 2.2 to 5.7 %. Additionally, the stability of the mycotoxins in the CRM was evaluated under different temperature conditions and scheduled test periods, including storage at -70°C, -20°C, and 4°C and room temperature for up to 12 months, 6 months, and 1 month, respectively. The content of each target mycotoxin in the CRM remained stable throughout the monitoring period at each temperature. Zearalenone content (153.6 ± 8.0 µg/kg) was assigned as the certified value. Meanwhile, the contents of α-zearalenol (1.30 ± 0.17 µg/kg), β-zearalenol (4.75 ± 0.33 µg/kg), and zearalanone (2.09 ± 0.16 µg/kg) were provided as informative values.
Collapse
Affiliation(s)
- Yared Getachew Lijalem
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea
- National Metrology Institute of Ethiopia, P. O. Box: 5722, Addis Ababa, Ethiopia
| | - Mohamed A Gab-Allah
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea
- Reference Materials Lab, National Institute of Standards, Tersa St, Haram, P. O. Box: 136, Giza, 12211, Egypt
| | - Hyeonwoo Yu
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
2
|
Ndoro J, Manduna IT, Nyoni M, de Smidt O. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins (Basel) 2022; 14:690. [PMID: 36287959 PMCID: PMC9607566 DOI: 10.3390/toxins14100690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Medicinal plants are important in the South African traditional healthcare system, the growth in the consumption has led to increase in trade through muthi shops and street vendors. Medicinal plants are prone to contamination with fungi and their mycotoxins. The study investigated multiple mycotoxin contamination using Ultra High Pressure Liquid Chromatography-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) for the simultaneous detection of Aflatoxin B1 (AFB1), Deoxynivalenol (DON), Fumonisins (FB1, FB2, FB3), Nivalenol (NIV), Ochratoxin A (OTA) and Zearalenone (ZEN) in frequently sold medicinal plants. Medicinal plant samples (n = 34) were purchased and analyzed for the presence of eight mycotoxins. DON and NIV were not detected in all samples analyzed. Ten out of thirty-four samples tested positive for mycotoxins -AFB1 (10.0%); OTA (10.0%); FB1 (30.0%); FB2 (50.0%); FB3 (20.0%); and ZEN (30.0%). Mean concentration levels ranged from AFB1 (15 µg/kg), OTA (4 µg/kg), FB1 (7-12 µg/kg), FB2 (1-18 µg/kg), FB3 (1-15 µg/kg) and ZEN (7-183 µg/kg). Multiple mycotoxin contamination was observed in 30% of the positive samples with fumonisins. The concentration of AFB1 reported in this study is above the permissible limit for AFB1 (5 µg/kg). Fumonisin concentration did not exceed the limits set for raw maize grain (4000 µg/kg of FB1 and FB2). ZEN and OTA are not regulated in South Africa. The findings indicate the prevalence of mycotoxin contamination in frequently traded medicinal plants that poses a health risk to consumers. There is therefore a need for routine monitoring of multiple mycotoxin contamination, human exposure assessments using biomarker analysis and establishment of regulations and standards.
Collapse
Affiliation(s)
- Julius Ndoro
- Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Private Bag X20539, Bloemfontein 9300, South Africa
| | - Idah Tichaidza Manduna
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| | - Makomborero Nyoni
- Research, Development and Innovation Department, National Biotechnology Authority, 21 Princess Drive Newlands, Harare, Zimbabwe
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Guan K, Huang R, Liu H, Huang Y, Chen A, Zhao X, Wang S, Zhang L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods 2022; 11:foods11192983. [PMID: 36230059 PMCID: PMC9562022 DOI: 10.3390/foods11192983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/02/2023] Open
Abstract
Indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) is an ideal immunoassay method for large-scale screenings to detect mycotoxin contaminants. However, the matrix effect of complicated samples has always been challenging when performing immunoassays, as it leads to false-positive or negative results. In this study, convenient QuEChERS technology combined with optimizing the dilution solvent was ingeniously used to eliminate interference from the sample matrix to greatly improve the detection accuracy, and reliable ic-ELISAs for the two official tolerance levels of 60 and 500 μg/kg were developed to screen zearalenone (ZEN) in edible and medical coix seeds without any further correction. Then, the 122 batches of coix seeds were determined, and the positive rate was up to 97.54%. The contaminated distribution was further analyzed, and risk assessment was subsequently performed for its edible and medical purposes. The findings indicated that consumption of coix seeds with higher ZEN contamination levels may cause adverse health effects for both medical and edible consumption in the adult population; even under the condition of average contamination level, ZEN from coix seeds was the more prominent contributor to the total risk compared to other sources when used as food; thus, effective prevention and control should be an essential topic in the future.
Collapse
Affiliation(s)
- Kaiyi Guan
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rentang Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yuxin Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
- Correspondence: (X.Z.); (L.Z.)
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.Z.); (L.Z.)
| |
Collapse
|
4
|
Sarkar R, Shinde R, Dhanshetty M, Banerjee K. Multi-mycotoxin analysis method using liquid chromatography with tandem mass spectrometry and fluorescence detection in Indian medicinal herbs: Development and validation. J Chromatogr A 2022; 1677:463310. [PMID: 35853424 DOI: 10.1016/j.chroma.2022.463310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
While medicinal plants are in high demand worldwide for their therapeutic properties, they can constitute a health concern to consumers when contaminated with mycotoxins. The unavailability of standardised methods for multiclass mycotoxin analysis to assess health risks has thus been realised. This study reports a simple, robust and precise method to estimate nine regulated mycotoxins in a range of Indian medicinal plant matrices including giloy (Tinospora cordifolia), ashwagandha (Withania somnifera), safed musli (Chlorophytum borivilianum), satavari (Asparagus racemosus) and tulsi (Ocimum sanctum). The sample preparation method involved extraction of homogenised matrices (12.5 g) using methanol:water (8:2, 100 mL) followed by cleanup through a multi-mycotoxin immunoaffinity column (IAC), which significantly reduced matrix interferences. The method was initially developed and validated using liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous analysis of aflatoxins (B1, B2, G1, G2), ochratoxin A, zearalenone, deoxynivalenol, T-2 and HT-2 toxin. Later, it was validated using LC-fluorescence (LC-FLD) for aflatoxins, ochratoxin A and zearalenone. The optimised sample preparation protocol and analytical method provided acceptable results. Compared to LC-FLD, it was possible to attain a lower limit of quantification (LOQ) with LC-MS/MS for all the tested analytes except aflatoxins. However, LOQs of both instruments were lower than the maximum limits (MLs), with recoveries ranging between 71 and 110% and precision (RSD) of ≤10% across matrices. Despite matrix-induced signal suppressions in LC-MS/MS analysis, the matrix-matched calibrations corrected all recoveries. Considering its accuracy, reliability, robustness and time-effectiveness, this method is recommended for regulatory testing purposes.
Collapse
Affiliation(s)
- Rohan Sarkar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat 387310, India; National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - Raviraj Shinde
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - Manisha Dhanshetty
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, P.O. Manjri Farm, Pune 412307, India.
| |
Collapse
|
5
|
Pallarés N, Tolosa J, Ferrer E, Berrada H. Mycotoxins in raw materials, beverages and supplements of botanicals: A review of occurrence, risk assessment and analytical methodologies. Food Chem Toxicol 2022; 165:113013. [PMID: 35523385 DOI: 10.1016/j.fct.2022.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
Abstract
Over recent years, consumer interest in natural products, such as botanicals has increased considerably. One of the factors affecting their quality is the presence of mycotoxins. This review focuses on exploring the mycotoxin occurrence in botanicals (raw material and ready-to-eat forms such as infusions or tablets) and the risk assessment due to their ingestion. Aflatoxins, Ochratoxin A, and Fumonisins are the most commonly studied mycotoxins and data in the literature report levels ranging from traces to 1000 μg/kg in raw materials. In general, the highest contents observed in raw materials decreased to unconcerning levels after the preparation of the infusions, reaching values that generally do not exceed 100 μg/L. Regarding botanical dietary supplements, the levels observed were lower than those reported for other matrices, although higher levels (of up to 1000 μg/kg) have been reported in some cases. Risk assessment studies in botanicals revealed a higher risk when they are consumed as tablets compared to infusions. Analytical methodologies implied in mycotoxin determination have also been contemplated. In this sense, liquid chromatography coupled to fluorescence detection has been the most frequently employed analytical technique, although in recent years tandem mass spectrometry has been widely used.
Collapse
Affiliation(s)
- N Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - J Tolosa
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - E Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| | - H Berrada
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
6
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Singh BK, Tiwari S, Maurya A, Kumar S, Dubey NK. Fungal and mycotoxin contamination of herbal raw materials and their protection by nanoencapsulated essential oils: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Cao J, Lian G, Qi X, Jin G. Design synthesis and photophysical properties of a novel antitumor fluorescence agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
GAO JW, ZHANG HF, PEI SC, ZHANG HN. In vitro degradative effect of purified zearalenone with or without adsorbents after bionic digestion. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.37120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Online high-efficient specific detection of zearalenone in rice by using high-loading aptamer affinity hydrophilic monolithic column coupled with HPLC. Talanta 2020; 219:121309. [DOI: 10.1016/j.talanta.2020.121309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
|
11
|
Li M, Tong Z, Gao X, Zhang L, Li S. Simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper by capillary zone electrophoresis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1388-1398. [PMID: 32546103 DOI: 10.1080/19440049.2020.1769197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, a simple and fast method for simultaneous detection of zearalenone, citrinin, and ochratoxin A utilising capillary zone electrophoresis with an ultraviolet detector was developed. The optimised approach was validated and applied using pepper samples. The proposed method yielded satisfactory linearity between the signal and the mycotoxin concentration in the range of 1.5-150 μg/kg for zearalenone, 4.5-150 μg/kg for citrinin, and 0.8-150 μg/kg for ochratoxin A. The limits of detection for these mycotoxins ranged from 0.3 to 1.5 μg/kg. The corresponding intra- and inter-day precisions were less than 3.5 % and 4.1 %, respectively. Moreover, the matrix effect was also assessed and the result was compared using the capillary zone electrophoresis and high-performance liquid chromatography methods. The developed approach could be used for simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Zaikang Tong
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Xingjun Gao
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Lijun Zhang
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Sha Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
12
|
Xu J, Chi J, Lin C, Lin X, Xie Z. Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. J Chromatogr A 2020; 1620:461026. [PMID: 32178860 DOI: 10.1016/j.chroma.2020.461026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Sensitive and specific analysis of zearalenone (ZEN) mycotoxin in cereals for ensuring food safety is critical and remains challenging. Herein, a new gold nanoparticles @aptamer-functionalized hybrid affinity monolithic column was proposed and employed for online specific recognition of ZEN by HPLC. Characterization on the morphology, Brunauer-Emmett-Teller (BET) surface area mechanical stability and specific performance of the obtained affinity monolith were investigated. A super-high aptamer coverage density could reach 3636 pmol/μL, which is preferable to gain an effective analysis of ZEN with high specificity and a low interference of co-existed substances including typical α-Zearalenol (α-ZOL) and Aflatoxin B1 (AFB1). The sensitive recognition of trace ZEN was obtained with the limit of detection (LOD) as low as 0.05 ng/mL. Applied to real cereal samples, satisfactory recoveries were obtained in the range of 91.6 ± 1.4%-97.8 ± 2.6% (n = 3) in corn, 93.8 ± 3.1%-95.0 ± 3.6% (n = 3) in wheat, and 90.9 ± 4.7%-94.7 ± 3.8% (n = 3) in rice, respectively. The results on quantitative analysis were similar to that of LC-MS and better than that obtained by using immunoaffinity column (IAC) or molecularly imprinted polymer (MIP). This protocol provided an efficient access to high-efficient online specific recognition of ZEN in cereals by using such an aptamer-affinity capillary monolithic column.
Collapse
Affiliation(s)
- Jinhua Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Jinxin Chi
- Xiamen huaxia University, Xiamen, 361024, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
13
|
Rocha-Miranda F, Venâncio A. Mycotoxigenic fungi in plant-based supplements and medicines. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Guo P, Yang W, Hu H, Wang Y, Li P. Rapid detection of aflatoxin B 1 by dummy template molecularly imprinted polymer capped CdTe quantum dots. Anal Bioanal Chem 2019; 411:2607-2617. [PMID: 30877344 DOI: 10.1007/s00216-019-01708-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
A novel and sensitive fluorescent sensor was synthesized for the rapid and specific recognition of aflatoxin B1 (AFB1) by our combining molecular imprinting techniques with quantum dot technology. Molecularly imprinted polymers coated CdTe quantum dots (MIP@CdTe QDs) were prepared through the Stöber method with 5,7-dimethoxycoumarin as a dummy template. 3-Aminopropyltriethoxysilane was selected as the functional monomer, and tetraethyl orthosilicate was used as the cross-linking agent. The best molar ratio of 5,7-dimethoxycoumarin to functional monomer to cross-linker was 4:20:15. The MIP@CdTe QD composites were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy. Under the optimum conditions, the relative fluorescence intensity of the MIP@CdTe QDs showed adequate linearity with AFB1 concentration over the range from 80 to 400 ng/g. The detection limit is 4 ng/g, according to 3s/K. Finally, the method was successfully applied to the quantitative determination of AFB1 in real samples. The spike recoveries at different spiking levels ranged from 99.20% to 101.78%, which were consistent with those measured by ultrahigh-performance liquid chromatography-mass spectrometry. The method developed for AFB1 detection lays the foundation for rapid detection of trace amounts of other exogenous harmful substances in a complicated matrix.
Collapse
Affiliation(s)
- Pengqi Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,School of Chemical Engineering, Northwest University, Xi'an, China
| | - Wu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
15
|
Pallarés N, Tolosa J, Mañes J, Ferrer E. Occurrence of Mycotoxins in Botanical Dietary Supplement Infusion Beverages. JOURNAL OF NATURAL PRODUCTS 2019; 82:403-406. [PMID: 30688071 DOI: 10.1021/acs.jnatprod.8b00283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of the present work was to study the occurrence of mycotoxins [aflatoxins (1-4), 3-acetyldeoxyniavlenol (5), 15-acetyldeoxynivalenol (6), nivalenol (7), HT-2 (8), T-2 (9), ochratoxin A (10), zearalenone (11), enniatin A (12), enniatin A1 (13), enniatin B (14), enniatin B1 (15), and beauvericin (16)] present in potable products derived from herbal teas. Analysis was carried out by liquid chromatography coupled to ion-trap tandem mass spectrometry (LC-MS/MS-IT) after a dispersive liquid-liquid microextraction procedure (DLLME) was conducted. The DLLME method was applied to 52 commercial samples of chamomile, chamomile with anise, chamomile with honey, linden, pennyroyal mint, thyme, valerian, and horsetail beverages. The results obtained showed that the following mycotoxins were detected in the samples: 2 (19.1 to 134.7 μg/L), 3 (below the limit of quantification), and 4 (2.2 to 13.5 μg/L). Also, 6 was detected in one sample at 112.5 μg/L, and 14 was detected only in two samples, although at very low concentration levels. Pennyroyal mint and thyme showed the highest concentration levels of mycotoxins. A risk assessment, however, showed negative results regarding the consumption of herbal tea beverages and the presence of mycotoxins.
Collapse
Affiliation(s)
- Noelia Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy , University of Valencia , Burjassot 46100 , Valencia , Spain
| | - Josefa Tolosa
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy , University of Valencia , Burjassot 46100 , Valencia , Spain
| | - Jordi Mañes
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy , University of Valencia , Burjassot 46100 , Valencia , Spain
| | - Emilia Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy , University of Valencia , Burjassot 46100 , Valencia , Spain
| |
Collapse
|
16
|
Sun S, Yao K, Zhao S, Zheng P, Wang S, Zeng Y, Liang D, Ke Y, Jiang H. Determination of aflatoxin and zearalenone analogs in edible and medicinal herbs using a group-specific immunoaffinity column coupled to ultra-high-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:228-236. [PMID: 29909149 DOI: 10.1016/j.jchromb.2018.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
Six aflatoxins (AFs; AF B1, B2, G1, G2, M1 and M2) and six zearalenone (ZEN) analogs (ZEN, zearalanone, α-zeralanol, β-zeralanol, α-zearalenol, and β-zearalenol) were simultaneously extracted from edible and medicinal herbs using a group-specific immunoaffinity column (IAC) and then identified by ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The IAC was prepared by coupling N-hydroxysuccinimide-activated Sepharose 4B Fast Flow gel with two group-specific monoclonal antibodies. The column capacities to six AFs and six ZEN analogs ranged from 100.2 ng to 167.1 ng and from 59.5 ng to 244.4 ng, respectively. The IAC-UPLC-MS/MS method was developed and validated with three different matrices (Chinese yam [Dioscorea polystachya], Platycodon grandiflorum and coix seed [Semen Coicis]). Recoveries of twelve analytes from edible and medicinal herbs were in the range of 64.7%-112.1%, with relative standard deviations below 13.7%. The limits of quantification were in the range from 0.08 μg kg-1 to 0.2 μg kg-1. The method was proven to be sensitive and accurate, and suitable for the determination of real samples.
Collapse
Affiliation(s)
- Shujuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Sijun Zhao
- China Animal Health and Epidemiology Center, Qingdao 266032, People's Republic of China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Sihan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Yuyang Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Demei Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, People's Republic of China.
| |
Collapse
|
17
|
Extrinsic harmful residues in Chinese herbal medicines: types, detection, and safety evaluation. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
18
|
Zhang L, Dou XW, Zhang C, Logrieco AF, Yang MH. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins (Basel) 2018; 10:E65. [PMID: 29393905 PMCID: PMC5848166 DOI: 10.3390/toxins10020065] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Wen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Antonio F Logrieco
- National Research Council of Italy, CNR-ISPA, Via G. Amendola, 122/O, I-70126 Bari, Italy.
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
19
|
|
20
|
He Q, Peng H, Yang J, Xu Z, Fan C, Sun Y. QuEChERS extraction followed by enzyme-linked immunosorbent assay for determination of deoxynivalenol and zearalenone in cereals. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1348491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Qiurong He
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
- GuangDong Food and Drug Administration, Guangzhou, People’s Republic of China
| | - Hongwei Peng
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
| | - Jinyi Yang
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
| | - Zhenlin Xu
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
| | - Congcong Fan
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
| | - Yuanming Sun
- Laboratory of Quality and Safety Risk Assessment in Agricultural Products Preservation Ministry of Agriculture, Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agriculture University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Do KH, An TJ, Oh SK, Moon Y. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. Toxins (Basel) 2015; 7:4111-30. [PMID: 26473926 PMCID: PMC4626724 DOI: 10.3390/toxins7104111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 01/16/2023] Open
Abstract
Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.
Collapse
Affiliation(s)
- Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
| | - Tae Jin An
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumseong 55365, Korea.
| | - Sang-Keun Oh
- Department of Applied Biology, College of Agricultural & Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
- Research Institute for Basic Sciences and Medical Research Institute, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
22
|
Pei SC, Zhen YP, Gao JW, Lee WJ, Zhang HF, Ji C, Zhang XZ, Chen C. Screening and monitoring zearalenone-producingFusariumspecies by PCR and zearalenone by monoclonal antibodies in feed from China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2014; 7:282-7. [DOI: 10.1080/19393210.2014.925981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Ashiq S, Hussain M, Ahmad B. Natural occurrence of mycotoxins in medicinal plants: a review. Fungal Genet Biol 2014; 66:1-10. [PMID: 24594211 DOI: 10.1016/j.fgb.2014.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Medicinal plants are widely used as home remedies and raw materials for the pharmaceutical industries. Herbal remedies are used in the prevention, treatment and cure of disorders and diseases since ancient times. However, use of medicinal herbs may not meet the requirements of quality, safety and efficacy. During harvesting, handling, storage and distribution, medicinal plants are subjected to contamination by various fungi, which may be responsible for spoilage and production of mycotoxins. The increasing consumption of medicinal plants has made their use a public health problem due to the lack of effective surveillance of the use, efficacy, toxicity and quality of these natural products. The increase in use of medicinal plants may lead to an increase in the intake of mycotoxins therefore contamination of medicinal plants with mycotoxins can contribute to adverse human health problems and therefore represents a special hazard. Numerous natural occurrences of mycotoxins in medicinal plants and traditional herbal medicines have been reported from various countries including Spain, China, Germany, India, Turkey and from Middle East as well. This review discusses the important mycotoxins and their natural occurrences in medicinal plants and their products.
Collapse
Affiliation(s)
- Samina Ashiq
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Mubbashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, 26000, Pakistan.
| | - Bashir Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| |
Collapse
|
24
|
Pei SC, Lee WJ, Zhang GP, Hu XF, Eremin SA, Zhang LJ. Development of anti-zearalenone monoclonal antibody and detection of zearalenone in corn products from China by ELISA. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
YANG XH, KONG WJ, YANG MH, ZHAO M, OUYANG Z. Application of Aptamer Identification Technology in Rapid Analysis of Mycotoxins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60630-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
27
|
Xu F, Weijun K, Meihua Y, Zhen O. Latest Advancement for Detection Methods of Mycotoxins in Traditional Chinese Medicine. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s1876-3553(13)60011-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, Van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2010-2011. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2011.1338] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2010 and mid-2011. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. Analytical methods for mycotoxins continue to be developed and published. Despite much interest in immunochemical methods and in the rapid development of LC-MS methodology, more conventional methods, sometimes linked to novel clean-up protocols, have also been the subject of research publications over the above period. Occurrence of mycotoxins falls outside the main focus of this review; however, where relevant to analytical method development, this has been mentioned.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Ctra. Pozuelo a Majadahonda km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M. Jonker
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Cluster Natural Toxins and Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av. Dr Arnaldo 355, 01246-902, São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 700126 Bari, Italy
| | - H. Van Egmond
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Cluster Natural Toxins and Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625 USA
| |
Collapse
|