1
|
Rodrigues K, Batista-Silva H, de Moura KRS, Van Der Kraak G, Silva FRMB. Dibutyl phthalate disrupts energy metabolism and morphology in the gills and induces hepatotoxicity in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:883-893. [PMID: 37537493 DOI: 10.1007/s10695-023-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
This study investigated the acute effects of dibutyl phthalate (DBP) exposure on energy metabolism and gill histology in zebrafish (Danio rerio). The in vitro incubation of gill tissue with 10 μM DBP for 60 min altered tissue energy supply, as shown by decreased lactate content and lactate dehydrogenase (LDH) activity. Higher concentrations of DBP (100 μM and 1 mM) increased lactate content and LDH activity; however, they blocked glucose uptake, depleted the glycogen content in cellular stores, and induced injury to the gills, as measured by LDH release to the extracellular medium. In addition, in vivo exposure of fish to 1 pM DBP for 12 h induced liver damage by increasing alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) activities. Gill histology indicated hyperemia, lamellar fusion, lamellar telangiectasis, and necrosis. Data indicate that acute exposure of zebrafish gills to the higher DBP concentrations studied induces anaerobic cellular activity and high lactate production, causing gill damage, diminishing cell viability, and incurring liver dysfunction.
Collapse
Affiliation(s)
- Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Kieiv Resende Sousa de Moura
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
2
|
Tomazi R, Figueira ÂC, Ferreira AM, Ferreira DQ, de Souza GC, de Souza Pinheiro WB, Pinheiro Neto JR, da Silva GA, de Lima HB, da Silva Hage-Melim LI, Pereira ACM, Carvalho JCT, da Silva de Almeida SSM. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Pharmaceuticals (Basel) 2021; 14:ph14090856. [PMID: 34577555 PMCID: PMC8472165 DOI: 10.3390/ph14090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/29/2022] Open
Abstract
Hancornia speciosa Gomes is a tree native to Brazil and has therapeutic potential for several diseases. Ethnopharmacological surveys have reported that the plant is used as a hypoglycemic agent and to lose weight. This study aimed to evaluate the effects of the aqueous extract from H. speciosa latex (LxHs) in a zebrafish model of diabetes. The extract was evaluated through high-performance thin-layer chromatography (HTPLC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FT-IR). We then tested treatments with LxHs (500, 1000, and 1500 mg/kg) by assessing blood glucose levels in alloxan-induced diabetic animals, and metformin was used as a control. The toxicity was evaluated through histopathology of the pancreas and biochemical assessment of serum levels of AST, ALT, creatinine, and urea. The extract was also assessed for acute toxicity through several parameters in embryos and adult animals. Finally, we performed in silico analysis through the SEA server and docking using the software GOLD. The phytochemical study showed the compounds cornoside, dihydrocornoide, and 1-O-methyl-myoinositol (bornesitol). The treatment with all doses of LxHs significantly decreased alloxan-induced hyperglycemia without any significant histological or biochemical abnormalities. No significant frequency of teratogenesis was observed in the embryos exposed to the extract, and no significant behavioral changes or deaths were observed in adult animals. In silico, the results showed a potential interaction between inositol and enzymes involved in carbohydrates’ metabolism. Overall, the results show a hypoglycemic activity of the extract in vivo, with no apparent toxicity. The computational studies suggest this could be at least partially due to the presence of bornesitol, since inositols can interact with carbohydrates’ enzymes.
Collapse
Affiliation(s)
- Rosana Tomazi
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte (Ppg-Bionorte), Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP), Rodovia BR-210, km 03, S/n—Brasil Novo, Macapá 68909-398, AP, Brazil; (R.T.); (Â.C.F.)
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
- Laboratório de Farmacognosia e Fitoquímica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil;
| | - Ângela Costa Figueira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte (Ppg-Bionorte), Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP), Rodovia BR-210, km 03, S/n—Brasil Novo, Macapá 68909-398, AP, Brazil; (R.T.); (Â.C.F.)
| | - Adriana Maciel Ferreira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
| | - Diego Quaresma Ferreira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
| | - Gisele Custódio de Souza
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
| | - Wandson Braamcamp de Souza Pinheiro
- Laboratório de Química Industrial, Instituto de Química, Universidade Federal do Pará (UFPA), Rua. Augusto Corrêa, Guamá, 01, Belém 66075-110, AP, Brazil; (W.B.d.S.P.); (J.R.P.N.); (G.A.d.S.)
| | - José Rodrigues Pinheiro Neto
- Laboratório de Química Industrial, Instituto de Química, Universidade Federal do Pará (UFPA), Rua. Augusto Corrêa, Guamá, 01, Belém 66075-110, AP, Brazil; (W.B.d.S.P.); (J.R.P.N.); (G.A.d.S.)
| | - Geilson Alcantara da Silva
- Laboratório de Química Industrial, Instituto de Química, Universidade Federal do Pará (UFPA), Rua. Augusto Corrêa, Guamá, 01, Belém 66075-110, AP, Brazil; (W.B.d.S.P.); (J.R.P.N.); (G.A.d.S.)
| | - Henrique Barros de Lima
- Laboratório de Química Medicinal, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (H.B.d.L.); (L.I.d.S.H.-M.)
| | - Lorane Izabel da Silva Hage-Melim
- Laboratório de Química Medicinal, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (H.B.d.L.); (L.I.d.S.H.-M.)
| | - Arlindo César Matias Pereira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil; (A.M.F.); (D.Q.F.); (G.C.d.S.); (A.C.M.P.)
- Correspondence:
| | - Sheylla Susan Moreira da Silva de Almeida
- Laboratório de Farmacognosia e Fitoquímica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil;
| |
Collapse
|
3
|
Cao XL, Sparling M, Zhao W, Arbuckle TE. GC-MS Analysis of Phthalates and Di-(2-thylhexyl) Adipate in Canadian Human Milk for Exposure Assessment of Infant Population. J AOAC Int 2021; 104:98-102. [PMID: 33216865 DOI: 10.1093/jaoacint/qsaa108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Although more information has become available on the occurrence of phthalates and di(2-ethylhexyl) adipate (DEHA) in foods including cow's milk, information on their presence in human milk, the important and recommended sole diet for infants up to six months of age, is very limited, especially for DEHA. OBJECTIVE To develop a GC-MS method for simultaneous analysis of DEHA and phthalates in human milk samples and generate occurrence data for exposure assessment. METHOD Human milk samples were extracted with acetonitrile followed by dispersive solid-phase extraction and GC-MS analysis. RESULTS Among the 305 human milk samples collected from the Canadian Maternal-Infant Research on Environmental Chemicals Study, some phthalates (DHxP, BBzP, and DOP) were not detected in any of the samples, while DEHA and the other phthalates (DMP, DEP, DBP, DiBP, and DEHP) were detected at low frequencies with levels from 30.4-237 ng/g in up to 31 of the 305 human milk samples. CONCLUSIONS In general, DEHA and phthalates were detected at low frequencies and low levels in the 305 human milk samples. HIGHLIGHTS A GC-MS method based on dispersive solid phase extraction was developed for analysis of DEHA and eight phthalates in 305 human milk samples for exposure assessment.
Collapse
Affiliation(s)
- Xu-Liang Cao
- Health Canada, Food Directorate, Bureau of Chemical Safety, Food Research Division, 251 Sir Frederick Banting Driveway, Ottawa, ON, Canada, K1A 0K9
| | - Melissa Sparling
- Health Canada, Food Directorate, Bureau of Chemical Safety, Food Research Division, 251 Sir Frederick Banting Driveway, Ottawa, ON, Canada, K1A 0K9
| | - Wendy Zhao
- Health Canada, Food Directorate, Bureau of Chemical Safety, Food Research Division, 251 Sir Frederick Banting Driveway, Ottawa, ON, Canada, K1A 0K9
| | - Tye E Arbuckle
- Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Science and Research Bureau, 101 Tunney's Pasture Dr, AL 0201A, Ottawa, ON, Canada, K1A 0K9
| |
Collapse
|
4
|
Jergensen T, Cusmano D, Roy NM. Di-butyl phthalate (DBP) induces craniofacial defects during embryonic development in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:995-1002. [PMID: 31463621 DOI: 10.1007/s10646-019-02100-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Di-butyl phthalate (DBP) is commonly added to make plastics softer and more pliable and is found in a variety of consumer and industrial products. Alarmingly high levels of DBP have been detected in water and sediment as DBP leaches from products. These levels are concerning and have led the Environmental Protection Agency to label DBP as a priority environmental pollutant and the European Commission to label DBP as a priority substance. Given the ubiquitous presence of DBP globally and continuous exposure to DBP, studies on the developmental toxicity of DBP are needed. The endocrine disrupting effects of DBP are well documented, but developmental toxicity of DBP during critical developmental time windows is understudied. Here, we investigate the developmental effects of DBP exposure during early development. We find defects in craniofacial development including a decrease in overall cranial size in DBP treated embryos, but the intraocular distance was increased compared to controls. Further investigation of jawbone development demonstrated loss of and disorganization of cartilage development. Defects in vascular innervation and neuronal patterning were also noted. Here we conclude that exposure to DBP during crucial time windows of embryonic development is toxic to craniofacial development.
Collapse
Affiliation(s)
- Tanner Jergensen
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA
| | - Danielle Cusmano
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA.
| |
Collapse
|
5
|
Crobeddu B, Ferraris E, Kolasa E, Plante I. Di(2-ethylhexyl) phthalate (DEHP) increases proliferation of epithelial breast cancer cells through progesterone receptor dysregulation. ENVIRONMENTAL RESEARCH 2019; 173:165-173. [PMID: 30909102 DOI: 10.1016/j.envres.2019.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/20/2019] [Accepted: 03/15/2019] [Indexed: 05/05/2023]
Abstract
The di(2-ethylhexyl) phthalate (DEHP) is a plasticizer incorporated to plastic matrices of widely used consumer products. However, it is gradually released from these products, resulting in a chronic exposure for humans. Although DEHP, similar to other members of the phthalates family, is generally considered as an endocrine disruptor, the mechanisms implicated in its toxicity are yet poorly understood. Our objective was to determine the effects of an exposure to DEHP and to one of its major metabolite, the mono(2-ethylhexyl) phthalate (MEHP) on markers involved in breast carcinogenesis. T-47D cells were exposed to environmentally relevant and higher doses of DEHP and MEHP (0.1-10 000 nM) for 4 days. Our results showed that an exposure to 10 000 nM of DEHP and 0.1 nM of MEHP significantly increased the proliferation of T-47D cells, without inducing apoptosis. In addition, a significant increase in the protein levels of the isoform A of the progesterone receptor (PR) and of nuclear levels of PR were observed in T-47D cells exposed to 10 000 nM of DEHP. Importantly, the increased proliferation and nuclear levels of PR were totally and partially inhibited, respectively, by Mifepristone, a PR antagonist. These results suggest that an exposure to DEHP or MEHP increase cell proliferation by activating PR signaling, which could potentially increase the risks to develop breast cancer. The mechanism of activation of the progesterone pathway by DEHP and the long-term consequences of this activation remained to be elucidated.
Collapse
Affiliation(s)
| | | | - Elise Kolasa
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | |
Collapse
|
6
|
Abstract
BACKGROUND Environmental contaminants ranging from legacy chemicals like p,p'-dichlorodiphenyltrichloroethane (DDT) to emerging chemicals like phthalates are ubiquitous. Research aims/questions: This research aims to examine the presence and co-occurrence of contaminants in human milk and effects of pasteurization on human milk chemical contaminants. METHODS We analyzed human milk donated by 21 women to a milk bank for 23 chemicals, including the persistent organic pollutants (POPs) polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene (DDE) isomers that are known to sequester in adipose tissue, along with the current-use and nonpersistent pesticides chlorpyrifos and permethrin, phthalates, and bisphenol A (BPA). Human milk was analyzed raw and pasteurized for these chemicals using gas chromatography-tandem mass spectrometry for the POPs and high-performance liquid chromatography-tandem mass spectrometry for non-POPs. RESULTS Within the different chemical classes, PBDE47, PCB153, ppDDE, and MEHHP (phthalate metabolite) had the highest median concentrations and were observed in all samples. We also observed chlorpyrifos and BPA in all samples and permethrin in 90% of the samples tested. Only two chemicals, chlorpyrifos and permethrin, were susceptible to substantial degradation from pasteurization, a standard method for processing donated human milk. CONCLUSION We detected 19 of 23 chemicals in all of our prepasteurized milk and 18 of 23 chemicals in all of our pasteurized milk. Pasteurization did not affect the presence of most of the chemicals. Future research should continue to explore human milk for potential chemical contamination and as a means to surveil exposures among women and children.
Collapse
Affiliation(s)
| | - Ronald S. Cohen
- Stanford University, Stanford, CA, USA
- Mother’s Milk Bank, San José, CA, USA
| | | | | | | |
Collapse
|
7
|
Roy NM, Zambrzycka E, Santangelo J. Butyl benzyl phthalate (BBP) induces caudal defects during embryonic development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:129-135. [PMID: 28934690 DOI: 10.1016/j.etap.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Butyl benzyl phthalate (BBP) is commonly added during the manufacturing of plastics to increase flexibility and elasticity. However, BBP leaches off of plastic and environment presence has been detected in soil, groundwater and sediment potentially effecting organisms in the environment. Given the widespread uses of BBP in household, consumer goods and the presence of BBP in the environment, studies on developmental toxicity are needed. Here, we use a zebrafish model to investigate the early developmental toxicity of BBP. We treated gastrula staged embryos with increasing concentrations of BBP and noted concentration-dependent defects in caudal tail development, but the effect was caudal specific with no other developmental defects noted. In situ hybridization studies using muscle and notochord markers show alterations in muscle development and non-linear, kinked notochord staining. A more detailed antibody staining using a myosin specific marker shows disorganized myofibrils and a loss of chevron shaped somites. Furthermore, vascular development in the tail was also disrupted in a concentration dependent manner. We conclude that BBP is toxic to caudal development in zebrafish. The sensitivity of zebrafish during development to environmental toxins and chemicals has been useful in assessing the health of the aquatic environment. The results presented here are a useful early warning system for contamination that could affect human health.
Collapse
Affiliation(s)
- Nicole M Roy
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States.
| | - Ewelina Zambrzycka
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States
| | - Jenna Santangelo
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States
| |
Collapse
|
8
|
Üstündağ ÜV, Ünal İ, Ateş PS, Alturfan AA, Yiğitbaşı T, Emekli-Alturfan E. Bisphenol A and di(2-ethylhexyl) phthalate exert divergent effects on apoptosis and the Wnt/β-catenin pathway in zebrafish embryos: A possible mechanism of endocrine disrupting chemical action. Toxicol Ind Health 2017; 33:901-910. [PMID: 28992791 DOI: 10.1177/0748233717733598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyethylene terephthalate (PET) and polycarbonate (PC) are the most commonly used plastics in water bottles. Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in PET plastics, and bisphenol A (BPA) is used to produce PC. Both DEHP and BPA are known for their potential endocrine disrupting effects. The Wnt/β-catenin signaling pathway has important roles in cell proliferation, cell specification and cell fate determination during embryonic development. Recent reports suggest a link between the Wnt/β-catenin signaling pathway and apoptosis. The aim of this study was to investigate the relation between Wnt/β-catenin signaling and apoptosis in the case of BPA and DEHP exposure in zebrafish embryos. Accordingly, in vivo cell death was assessed using acridine orange staining, and reverse transcription polymerase chain reaction was used to determine the expressions of wnt3a, gsk3β and ccnd1. Proliferative cell nuclear antigen, β-catenin and Wnt3a expressions were determined immunohistochemically. Vitellogenin levels were determined using Enzyme Linked ImmunoSorbent Assay (ELISA). Increased vitellogenin levels, apoptosis, and wnt3a and gsk3β expressions were observed in BPA-exposed zebrafish embryos. Increased apoptosis in the BPA-exposed embryos may be due to the pro-apoptotic changes induced by Wnt3a, whereas DEHP might be suggested to have a minor effect as Wnt3a expression; vitellogenin levels and apoptosis did not increase significantly following exposure to DEHP.
Collapse
Affiliation(s)
- Ünsal Veli Üstündağ
- 1 Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacik, Istanbul, Turkey
| | - İsmail Ünal
- 2 Department of Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkey
| | - Perihan Seda Ateş
- 2 Department of Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkey
| | - A Ata Alturfan
- 3 Department of Biochemistry, Istanbul Cerrahpasa Medical Faculty, Istanbul University, Fatih, Istanbul, Turkey
| | - Türkan Yiğitbaşı
- 1 Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacik, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- 2 Department of Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkey
| |
Collapse
|
9
|
Del Bubba M, Ancillotti C, Checchini L, Fibbi D, Rossini D, Ciofi L, Rivoira L, Profeti C, Orlandini S, Furlanetto S. Determination of phthalate diesters and monoesters in human milk and infant formula by fat extraction, size-exclusion chromatography clean-up and gas chromatography-mass spectrometry detection. J Pharm Biomed Anal 2017; 148:6-16. [PMID: 28946042 DOI: 10.1016/j.jpba.2017.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023]
Abstract
A sensitive and reliable analytical method was developed for the simultaneous determination of five phthalate diesters and corresponding monoesters in human milk samples and infant formulas. The method involved a liquid-liquid extraction with a CH2Cl2/CH3OH/NaCl 30% 2/1/0.5 (v/v/v) mixture, the clean-up of the extract by size-exclusion chromatography (swelling and elution solvent: cyclohexane/ethyl acetate 9/1v/v), the derivatization of monoesters by trimethylsilyl-diazomethane and instrumental analysis by gas chromatography coupled with mass spectrometry. Recovery was in the range of 83-115% and precision was found between 9% and 21%. For phthalate diesters, method detection limits (MDLs) ranged from hundreds of ng/kg to 4.2μg/kg on a fresh weight milk (f.w.) basis, depending on blank contribution evaluated in matrix. Lower MDLs (0.03-0.8μg/kg f.w.) were achieved for corresponding monoesters. The proposed method was applied to the determination of target compounds in nine human milk samples and four infant formulas, confirming their presence in all samples. However, a generally higher contamination was assessed in artificial milk than in breast milk samples.
Collapse
Affiliation(s)
- Massimo Del Bubba
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudia Ancillotti
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Leonardo Checchini
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Donatella Fibbi
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniele Rossini
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Ciofi
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Rivoira
- Department of Chemistry University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Claudio Profeti
- Banca del Latte Umano Donato di Firenze, Viale Pieraccini 24, 50139 Florence, Italy
| | - Serena Orlandini
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sandra Furlanetto
- Department of Chemistry University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Motohashi M, Wempe MF, Mutou T, Okayama Y, Kansaku N, Takahashi H, Ikegami M, Asari M, Wakui S. In utero-exposed di(n-butyl) phthalate induce dose dependent, age-related changes of morphology and testosterone-biosynthesis enzymes/associated proteins of Leydig cell mitochondria in rats. J Toxicol Sci 2016; 41:195-206. [PMID: 26961603 DOI: 10.2131/jts.41.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Female pregnant Sprague-Dawley rats were intragastrically (ig) administered di(n-butyl) phthalate (DBP) at four doses (0, 10, 50 and 100 mg/kg) during gestation days (GD) 12-21 (n = 5 per group). The age-related morphological changes of Leydig cell mitochondrion (LC-Mt) and testosterone biosynthesis enzymes/associated genes/proteins expression levels were investigated. As compared to the control (no DBP), the 10 mg, and 50 mg DBP dose groups, the 100 mg DBP dose group at weeks 5 and 7 showed a significant amount of small LC-Mt. Thereafter, from weeks 9 to 17, the LC-Mt size and quantity in the 100 mg DBP dose group increased and became statistically similar to the other dose groups; hence, dose and time-dependent LC-Mt changes were observed. Throughout the study, the 100 mg DBP dose group had significantly lower testosterone levels. In addition, the 100 mg DBP dose group displayed lower StAR (StAR, steroidogenic acute regulatory protein) and P450scc (CYP11a1, cholesterol side-chain cleavage enzyme) levels at weeks 5 and 7, but they became statistically similar to all other dose groups at weeks 9 to 17; in contrast, the SR-B1 (Sarb1, scavenger receptor class B member 1) levels were similar for all DBP dose groups. The rats in utero 100 mg DBP /kg/day (GD 12-21) exposure results from this study indicate a dose-dependent, age-related morphological change in LC-Mt which are linked to reductions in testosterone biosynthesis genes / proteins expression, specifically StAR and P450scc.
Collapse
Affiliation(s)
- Masaya Motohashi
- Department of Toxicology, Azabu University School of Veterinary Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu X, Cao YF, Ran RX, Dong PP, Gonzalez FJ, Wu X, Huang T, Chen JX, Fu ZW, Li RS, Liu YZ, Sun HZ, Fang ZZ. New insights into the risk of phthalates: Inhibition of UDP-glucuronosyltransferases. CHEMOSPHERE 2016; 144:1966-72. [PMID: 26547877 PMCID: PMC6300982 DOI: 10.1016/j.chemosphere.2015.10.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 05/22/2023]
Abstract
Wide utilization of phthalates-containing products results in the significant exposure of humans to these compounds. Many adverse effects of phthalates have been documented in rodent models, but their effects in humans exposed to these chemicals remain unclear until more mechanistic studies on phthalate toxicities can be carried out. To provide new insights to predict the potential adverse effects of phthalates in humans, the recent study investigated the inhibition of representative phthalates di-n-octyl ortho-phthalate (DNOP) and diphenyl phthalate (DPhP) towards the important xenobiotic and endobiotic-metabolizing UDP-glucuronosyltransferases (UGTs). An in vitro UGTs incubation system was employed to study the inhibition of DNOP and DPhP towards UGT isoforms. DPhP and DNOP weakly inhibited the activities of UGT1A1, UGT1A7, and UGT1A8. 100 µM of DNOP inhibited the activities of UGT1A3, UGT1A9, and UGT2B7 by 41.8% (p < 0.01), 45.6% (p < 0.01), and 48.8% (p < 0.01), respectively. 100 µM of DPhP inhibited the activity of UGT1A3, UGT1A6, and UGT1A9 by 81.8 (p < 0.001), 49.1% (p < 0.05), and 76.4% (p < 0.001), respectively. In silico analysis was used to explain the stronger inhibition of DPhP than DNOP towards UGT1A3 activity. Kinetics studies were carried our to determine mechanism of inhibition of UGT1A3 by DPhP. Both Dixon and Lineweaver-Burk plots showed the competitive inhibition of DPhP towards UGT1A3. The inhibition kinetic parameter (Ki) was calculated to be 0.89 µM. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1>[I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), these studies predicted in vivo drug-drug interaction might occur when the plasma concentration of DPhP was above 0.089 µM. Taken together, this study reveales the potential for adverse effects of phthalates DNOP and DPhP as a result of UGT inhibition.
Collapse
Affiliation(s)
- Xin Liu
- First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rui-Xue Ran
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, China
| | - Pei-Pei Dong
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xue Wu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University, Dalian, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the Affiliated Zhongshan Hospital of Dalian University, Zhongshan, Dalian, China
| | - Ting Huang
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jian-Xin Chen
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zhi-Wei Fu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University, Dalian, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the Affiliated Zhongshan Hospital of Dalian University, Zhongshan, Dalian, China
| | - Rong-Shan Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hong-Zhi Sun
- First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Male rats exposed in utero to di(n-butyl) phthalate: Age-related changes in Leydig cell smooth endoplasmic reticulum and testicular testosterone-biosynthesis enzymes/proteins. Reprod Toxicol 2015; 59:139-46. [PMID: 26706031 DOI: 10.1016/j.reprotox.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/15/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
This study investigated the age-related (i.e., weeks 5, 7, 9, 14 and 17) morphological changes of Leydig cell smooth endoplasmic reticulum (LCs-ER) and testicular testosterone biosynthesis/protein expression in rats in utero exposed to di(n-butyl) phthalate (DBP) (intragastrically; 100mg/kg/day) on days 12-21 post-conception. Ultrastructural observations revealed the LCs-ER of the DBP group were non-dilated until peri-puberty, and thereafter decreased and disappeared. RT-PCR and Western blotting analyses revealed that StAR and P450scc levels in the DBP group were significantly lower at 5 and 7 weeks compared with the vehicle group but became similar during weeks 9-17. Although 3β-HSD, P450c17, and 17β-HSD levels of mRNA and protein in the DBP group were similar to the vehicle control group at 5 and 7 weeks of age, they were significantly lower during weeks 9-17. In utero DBP exposure results in age-related LCs-ER changes corresponding to reduction of testicular testosterone biosynthesis enzymes/associated proteins.
Collapse
|
13
|
Wang C, Li M, Xu H, Wei Y. Preparation of an internal surface reversed-phase restricted-access material for the analysis of hydrophobic molecules in biological matrices. J Chromatogr A 2014; 1343:195-9. [DOI: 10.1016/j.chroma.2014.03.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
|
14
|
Chen X, Xu S, Tan T, Lee ST, Cheng SH, Lee FWF, Xu SJL, Ho KC. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3156-68. [PMID: 24637910 PMCID: PMC3987027 DOI: 10.3390/ijerph110303156] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
Phthalates, widely used in flexible plastics and consumer products, have become ubiquitous contaminants worldwide. This study evaluated the acute toxicity and estrogenic endocrine disrupting activity of butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP) and their mixtures. Using a 72 h zebrafish embryo toxicity test, the LC50 values of BBP, DBP and a mixture of the six phthalates were found to be 0.72, 0.63 and 0.50 ppm, respectively. The other four phthalates did not cause more than 50% exposed embryo mortality even at their highest soluble concentrations. The typical toxicity symptoms caused by phthalates were death, tail curvature, necrosis, cardio edema and no touch response. Using an estrogen-responsive ChgH-EGFP transgenic medaka (Oryzias melastigma) eleutheroembryos based 24 h test, BBP demonstrated estrogenic activity, DBP, DEHP, DINP and the mixture of the six phthalates exhibited enhanced-estrogenic activity and DIDP and DNOP showed no enhanced- or anti-estrogenic activity. These findings highlighted the developmental toxicity of BBP and DBP, and the estrogenic endocrine disrupting activity of BBP, DBP, DEHP and DINP on intact organisms, indicating that the widespread use of these phthalates may cause potential health risks to human beings.
Collapse
Affiliation(s)
- Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Shisan Xu
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Tianfeng Tan
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Sin Ting Lee
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Shuk Han Cheng
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Fred Wang Fat Lee
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| | - Steven Jing Liang Xu
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| | - Kin Chung Ho
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Fromme H, Gruber L, Schuster R, Schlummer M, Kiranoglu M, Bolte G, Völkel W. Phthalate and di-(2-ethylhexyl) adipate (DEHA) intake by German infants based on the results of a duplicate diet study and biomonitoring data (INES 2). Food Chem Toxicol 2013; 53:272-80. [DOI: 10.1016/j.fct.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
|