1
|
Zhao TY, Bian Y, Zhou Y, Zhang Y, Feng XS, Chen F. Trends in pretreatment and determination methods for furfurals in foods: Update since 2017. Food Res Int 2025; 201:115600. [PMID: 39849758 DOI: 10.1016/j.foodres.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Furfurals, key derivatives of Maillard reactions commonly found in everyday foods, have been identified as having significant toxic effects on human health. Excessive intake of furfurals can lead symptoms such as weight loss, poor nutrient metabolism which followed by disease occurrence. The severe carcinogenicity, mutagenicity and genotoxicity of furfurals were well recognized recently. In response, international organizations have established strict limits on the allowable levels of furfurals in food products. Therefore, it is of paramount importance to implement control which mediated by modern pretreatment and analytical techniques, towards the daily accessibility of furfurals. SCOPE AND APPROACH This review seeks to present a comprehensive overview of recent advancements in the pretreatment and analytical techniques for furfurals in food from 2017 to 2023. Various pretreatment methods, such as liquid phase microextraction, solid phase extraction, solid phase microextraction, and QuEChERS, as well as analytical technologies like liquid chromatography-based methods and gas chromatography-based methods, are thoroughly discussed in terms of their mechanisms, benefits, and limitations. KEY FINDINGS AND CONCLUSIONS Currently, various pretreatment and analytical techniques with advantages and limitations had been proposed. The development of novel materials does facilitate the optimization and application of microextraction based pretreatment platforms which share with enhanced extraction efficiency. In addition, the development of novel targeting/sensing materials along with the utilization of high-resolution mass spectrometry could promote the determination sensitivity. In future, development of novel absorbents which mediates more desirable pretreatment methods, and automated and miniaturized on-site analytical instruments for furfurals determination still deserve indepth invesigation.
Collapse
Affiliation(s)
- Tong-Yi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Piergiovanni M, Gosetti F, Rocío-Bautista P, Termopoli V. Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches. MASS SPECTROMETRY REVIEWS 2024; 43:660-682. [PMID: 35980114 DOI: 10.1002/mas.21802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.
Collapse
Affiliation(s)
- Maurizio Piergiovanni
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Priscilla Rocío-Bautista
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Veronica Termopoli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
3
|
Pérez-Lucas G, Navarro G, Navarro S. Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods 2024; 13:1709. [PMID: 38890939 PMCID: PMC11171931 DOI: 10.3390/foods13111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
In this study, a critical review was carried out using the Web of ScienceTM Core Collection database to analyse the scientific literature published to date to identify lines of research and future perspectives on the presence of chemical pollutants in beer brewing. Beer is one of the world's most popular drinks and the most consumed alcoholic beverage. However, a widespread challenge with potential implications for human and animal health is the presence of physical, chemical, and/or microbiological contaminants in beer. Biogenic amines, heavy metals, mycotoxins, nitrosamines, pesticides, acrylamide, phthalates, bisphenols, microplastics, and, to a lesser extent, hydrocarbons (aliphatic chlorinated and polycyclic aromatic), carbonyls, furan-derivatives, polychlorinated biphenyls, and trihalomethanes are the main chemical pollutants found during the beer brewing process. Pollution sources include raw materials, technological process steps, the brewery environment, and packaging materials. Different chemical pollutants have been found during the beer brewing process, from barley to beer. Brewing steps such as steeping, kilning, mashing, boiling, fermentation, and clarification are critical in reducing the levels of many of these pollutants. As a result, their residual levels are usually below the maximum levels allowed by international regulations. Therefore, this work was aimed at assessing how chemical pollutants appear and evolve in the brewing process, according to research developed in the last few decades.
Collapse
Affiliation(s)
| | | | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain; (G.P.-L.); (G.N.)
| |
Collapse
|
4
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
5
|
Panelist Acceptance, Proximate Characteristics of Amino Acids and Volatile Compounds, and Color Profile of Fermented Cempedak (Artocarpus champeden) and Oyster Mushroom (Pleurotus ostreatus) Seasoning. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3092246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potential of mandai cempedak (Artocarpus champeden) powder to be mixed with other abundant raw materials such as oyster mushroom (Pleurotus ostreatus) as a flavoring ingredient is an exciting thing to study as a unique flavor source for the archipelago. This study aims to observe panelist acceptance, proximate characteristics of amino acid, volatile compounds, and color profiles on five mixed formulas of fermented cempedak (Artocarpus champeden) and oyster mushroom (Pleurotus ostreatus) seasoning. The five seasoning formulas combine 30–70% flavored mushroom powder and 30–70% mandai cempedak powder with control of commercial mushroom powder and pure mandai powder. Hedonic quality assessment on seasoning samples of flavored mushroom powder and mandai cempedak powder played a more critical role in the acceptance of the final product, with a slightly reddish yellow color tendency with a paleness level of around 66–67%. Seasoning samples had a savory taste with dominant amino acid profiles of ileusine (1.46%, w/w), glutamate (1.37%), methionine (0.82%), and aspartic acid (0.72%). All seasoning formulations of flavored mushroom and mandai cempedak powder have a moisture content of 8.4–10.9%, total protein 7.0–9.0%, soluble protein 2.4–3.5%, ash content 4.5–19.2%, fat content 2.3–4.5%, carbohydrates 62.7–79.4%, and the solubility is 31.0–89.4%. The dominant volatile compounds in seasoning are heptanone, dodecoxyethanol, and etradecyloxyethanol with pleasant aroma profiles, pungent fruity, green, citrus, and herbal. In conclusion, mandai cempedak powder to be mixed with other abundant raw materials such as oyster mushroom (Pleurotus ostreatus) can be used as a typical Indonesian flavor ingredient with unique characteristics in terms of its amino acid content, volatile compounds, and essential oils.
Collapse
|
6
|
Jiang K, Huang C, Liu F, Zheng J, Ou J, Zhao D, Ou S. Origin and Fate of Acrolein in Foods. Foods 2022; 11:foods11131976. [PMID: 35804791 PMCID: PMC9266280 DOI: 10.3390/foods11131976] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Acrolein is a highly toxic agent that may promote the occurrence and development of various diseases. Acrolein is pervasive in all kinds of foods, and dietary intake is one of the main routes of human exposure to acrolein. Considering that acrolein is substantially eliminated after its formation during food processing and re-exposed in the human body after ingestion and metabolism, the origin and fate of acrolein must be traced in food. Focusing on molecular mechanisms, this review introduces the formation of acrolein in food and summarises both in vitro and in vivo fates of acrolein based on its interactions with small molecules and biomacromolecules. Future investigation of acrolein from different perspectives is also discussed.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China;
| | - Danyue Zhao
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
7
|
Huang YH, Kao TH, Inbaraj BS, Chen BH. Improved Analytical Method for Determination of Furan and Its Derivatives in Commercial Foods by HS-SPME Arrow Combined with Gas Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7762-7772. [PMID: 35704793 DOI: 10.1021/acs.jafc.2c01832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to the presence of significant levels of toxic furan compounds reported globally in commercial foods by various food authorities, the objectives of this study were to develop an analytical method for determination of furan and its 10 derivatives in commercial foods using headspace-solid phase microextraction (HS-SPME)-Arrow coupled with gas chromatography-tandem mass spectrometry. Furan and its 10 derivatives were separated within 10 min by employing an HP-5MS capillary column with d4-furan as the internal standard for quantitation. The most optimal sample weight and extraction time for various commercial food samples, respectively, ranged from 1 to 5 g and 10-15 min depending on the sample variety. For extraction, carboxen/poly(dimethylsiloxane) (CAR/PDMS) cellulose was used with the temperature at 30 °C, equilibration time of 15 min, and desorption time of 3 min. The limit of detection ranged from 0.001 to 1.071 ng/g, while the limit of quantitation ranged from 0.003 to 3.571 ng/g. A high precision and accuracy were obtained for this method. The total furan content in commercial foods ranged from nd to 40 725.85 ng/g, in which the mean contents were the highest for brewed coffee (35 082.26 ng/g) and canned coffee (25 152.22 ng/g), while the lowest were for potato chip and cookies (0.57-1.48 ng/g), donut (1.50 ng/g), milk (0.34-30.38 ng/g), and oat (6.56 ng/g).
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
8
|
Liu R, Mao L, Guan Z, Wang C, Xu J, Huang L, Wang P, Xin G, Hu R, Zhang C, Zhao Z, Lin Y, Hu X. Highly sensitive analysis of low-molecular-mass aldehydes in beverages using a hydroxylamine reagent by high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 2022; 414:5009-5022. [PMID: 35641641 DOI: 10.1007/s00216-022-04132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/01/2022]
Abstract
In this study, a fluorescent reagent, 4-((aminooxy)methyl)-7-hydroxycoumarin (AOHC), was for the first time applied to label the low-molecular-mass aldehydes (LMMAs) through reductive oxyamination reaction to afford single N,O-substituted oxyamine derivatives at room temperatures with derivatization efficiencies as high as 96.8%. In the following high-performance liquid chromatography with fluorescence detection analysis, 12 LMMAs, including furfurals, aromatic aldehydes, and aliphatic aldehydes, were baseline-separated on an ODS column and detected with low limits of detection (LODs) (0.2-50 nM), and good precisions (intraday relative standard deviations [RSDs] were 2.40-4.68%, and interday RSDs were 4.65-8.91%). This approach was then adopted to analyze six alcoholic beverages and five dairy products, and nine LMMAs with concentrations in the 0.28-798.16 μM range were successfully detected with excellent accuracies (recoveries were 92.2-106.2%). Finally, the results were statistically analyzed and discussed. The proposed method has several advantages, including high sensitivity, room-temperature labeling, and the avoidance of further extraction and/or enrichment procedures, demonstrating its great utility for monitoring LMMAs in various complex matrices.
Collapse
Affiliation(s)
- Ran Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Long Mao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhaobing Guan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chengsheng Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Xu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Lujie Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Peike Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Guolin Xin
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Hu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuyu Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zihan Zhao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yawei Lin
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xiaosong Hu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
9
|
Dias RP, Nam SL, Schmidt SA, de la Mata AP, Harynuk J. Multivariate Optimization Procedure for Dynamic Headspace Extractions Coupled to GC(×GC). LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.gi5670v6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Volatile organic compounds (VOCs) are ubiquitous chemicals of great interest in the study of aromas and flavours of foods. Many recent studies present optimized headspace (HS) and dynamic headspace (DHS) methods for specific sample types; however, the literature does not present (to the best of our knowledge) a generalized procedure for the thorough optimization of a DHS extraction. This article presents an approach using design of experiments (DoE) for the optimization of DHS extraction parameters. The approach is demonstrated for two different food sample types with diverse populations of VOCs: active sourdough colony as an example with a high moisture content, and sourdough bread as an example with a lower moisture content. Optimized methods are assessed for VOC extraction reproducibility and exhaustiveness; guidelines for DHS optimization are presented.
Collapse
|
10
|
He L, Gao Y, Zhao L. Online coupling of bubbling extraction with gas chromatography-mass spectrometry for rapid quantitative analysis of volatiles in beer. J Chromatogr A 2022; 1665:462800. [DOI: 10.1016/j.chroma.2021.462800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
|
11
|
An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa ( Medicago sativa L.) Tissues. Molecules 2021; 26:molecules26216473. [PMID: 34770882 PMCID: PMC8587762 DOI: 10.3390/molecules26216473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Solid-phase microextraction (SPME) was coupled to gas chromatography mass spectrometry (GC-MS) and a method optimized to quantitatively and qualitatively measure a large array of volatile metabolites in alfalfa glandular trichomes isolated from stems, trichome-free stems, and leaves as part of a non-targeted metabolomics approach. Major SPME extraction parameters optimized included SPME fiber composition, extraction temperature, and extraction time. The optimized SPME method provided the most chemically diverse coverage of alfalfa volatile and semi-volatile metabolites using a DVB/CAR/PDMS fiber, extraction temperature of 60 °C, and an extraction time of 20 min. Alfalfa SPME-GC-MS profiles were processed using automated peak deconvolution and identification (AMDIS) and quantitative data extraction software (MET-IDEA). A total of 87 trichome, 59 stem, and 99 leaf volatile metabolites were detected after background subtraction which removed contaminants present in ambient air and associated with the fibers and NaOH/EDTA buffer solution containing CaCl2. Thirty-seven volatile metabolites were detected in all samples, while 15 volatile metabolites were uniquely detected only in glandular trichomes, 9 only in stems, and 33 specifically in leaves as tissue specific volatile metabolites. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) of glandular trichomes, stems, and leaves showed that the volatile metabolic profiles obtained from the optimized SPME-GC-MS method clearly differentiated the three tissues (glandular trichomes, stems, and leaves), and the biochemical basis for this differentiation is discussed. Although optimized using plant tissues, the method can be applied to other types of samples including fruits and other foods.
Collapse
|
12
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
13
|
Song X, Lu Y, Si B, Lu Y, Zhang Q, Lv L. Inhibitory Effect on Acrolein by Cyanidin-3- O-glucoside and Its Acrolein Adducts from the Pigment of Mynica Red. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11937-11946. [PMID: 34607437 DOI: 10.1021/acs.jafc.1c05223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrolein (ACR), the simplest α,β-unsaturated aldehyde, possesses high reactivity and toxicity both in vitro and in vivo and results in various chronic diseases. This has attracted increasing interest from researchers to screen various bioactive compounds to control it. In this article, we attempted to discover a new attribute of cyanidin-3-O-glucoside (C3G), including its ACR-scavenging capacity, reaction pathway, and possible application. Our findings revealed that C3G could capture ACR to form mono- and diadducts at room temperature by using liquid chromatography-mass spectrometry, and we further synthesized and elucidated the structures of C3G-ACR and C3G-2ACR using HRMS and 2D NMR. The structural data validated that there were two active sites of C3G for trapping ACR: at C-6 in the A-ring and C-5' in the B-ring. In addition, we found that C3G-ACR exhibited a more remarkable clearing ability than C3G within a short time. More than 65.9% of ACR was eliminated by C3G-ACR within 5 min via further formation of C3G-2ACR, but there was no obvious effect of C3G on ACR. When the incubation time was extended to 120 min, C3G could remove up to 83.2% of ACR. Subsequently, we also observed that mynica red (>5% C3G), as a pigmented food additive, could efficiently eliminate ACR generated in the Chinese liquor model and real red bayberry wine products to form C3G-ACR and C3G-2ACR. Both adducts increased significantly, by 10 times to a 100 times, after adding mynica red to red bayberry wine products for 24 h; they also increased rapidly with prolonged incubation time in the liquor-mynica red model system. Therefore, our findings suggest that C3G or mynica red may be developed as a promising novel ACR inhibitor in fruit wine and assembled alcoholic drinks or as a health food.
Collapse
Affiliation(s)
- Xiaoli Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889 Fazhan Road, Suqian, Jiangsu 223800, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Qiuting Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
14
|
Boronat A, Soldevila-Domenech N, Rodríguez-Morató J, Martínez-Huélamo M, Lamuela-Raventós RM, de la Torre R. Beer Phenolic Composition of Simple Phenols, Prenylated Flavonoids and Alkylresorcinols. Molecules 2020; 25:E2582. [PMID: 32498371 PMCID: PMC7321207 DOI: 10.3390/molecules25112582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Beer is a fermented beverage with beneficial phenolic compounds and is widely consumed worldwide. The current study aimed to describe the content of three families of phenolic compounds with relevant biological activities: prenylated flavonoids (from hops), simple phenolic alcohols (from fermentation) and alkylresorcinols (from cereals) in a large sample of beers (n = 45). The prenylated flavonoids analyzed were xanthohumol, isoxanthohumol, 6- and 8-prenylnaringenin. The total prenylated flavonoids present in beer ranged from 0.0 to 9.5 mg/L. The simple phenolic alcohols analyzed were tyrosol and hydroxytyrosol, ranging from 0.2 to 44.4 and 0.0 to 0.1 mg/L, respectively. Our study describes, for the first time, the presence of low amounts of alkylresorcinols in beer, in concentrations ranging from 0.02 to 11.0 µg/L. The results in non-alcoholic beer and the differences observed in the phenolic composition among different beer types and styles highlight the importance of the starting materials and the brewing process (especially fermentation) on the final phenolic composition of beer. In conclusion, beer represents a source of phenolic compounds in the diet that could act synergistically, triggering beneficial health effects in the context of its moderate consumption.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
| | - Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Medtep Inc., 08025 Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramanet, Spain;
| | - Rosa M. Lamuela-Raventós
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramanet, Spain;
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
15
|
Hernandes KC, Souza-Silva ÉA, Assumpção CF, Zini CA, Welke JE. Carbonyl compounds and furan derivatives with toxic potential evaluated in the brewing stages of craft beer. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:61-68. [DOI: 10.1080/19440049.2019.1675911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina C. Hernandes
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Érica A. Souza-Silva
- Instituto de Química, UFRGS, Porto Alegre, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Química, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Carolina F. Assumpção
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Juliane E. Welke
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|