1
|
Maheswarappa NB, Banerjee R, Muthukumar M. Antioxidant and angiotensin-I-converting enzyme (ACE-I) inhibitory activities of protein hydrolysates derived from water buffalo ( Bubalus bubalis) liver. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:36-43. [PMID: 36618041 PMCID: PMC9813329 DOI: 10.1007/s13197-022-05571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
In the current study, we attempted to use ginger as a novel and natural source of protease in comparison with other commercially available enzymes to extract and characterize antioxidant and antihypertensive hydrolysates from water buffalo liver, a protein rich offal. Hydrolysis of protein extracts from buffalo liver using proteinase-K, pronase-E and ginger protease significantly increased the %degree of hydrolysis (18.5-55%) and generated low-molecular weight peptides evident from SDS-PAGE. Enzyme treated hydrolysates exhibited higher (p < 0.05) DPPH radical scavenging activity (43.7-82.4%) and angiotensin-I-converting enzyme (ACE-I) inhibitory activity (46.9-50.1%) relative to control. Mass spectrometric analysis (MALDI-TOF MS) of selected gel-filtered fractions identified few important peptides derived from nuclear ribonucleoprotein, pyruvate kinase and phosphoglycerate kinase that possess strong antioxidant activity. Present findings indicate the efficacy of partially purified ginger as a novel source of protease in generating protein hydrolysates from water buffalo liver with significant antioxidant and antihypertensive activity in vitro. We successfully demonstrated the recovery of functional bioactive peptides from water buffalo liver which presents a potential opportunity for the meat industries to economically use this important byproduct.
Collapse
Affiliation(s)
| | - Rituparna Banerjee
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - M. Muthukumar
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| |
Collapse
|
2
|
Shi YJ, Zhao XH. Impact of the Plastein Reaction of Casein Hydrolysates in the Presence of Exogenous Amino Acids on Their Anti-Inflammatory Effect in the Lipopolysaccharide-Stimulated Macrophages. Foods 2022; 11:196. [PMID: 35053927 PMCID: PMC8775256 DOI: 10.3390/foods11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, papain-generated casein hydrolysates (CH) with a degree of hydrolysis of 13.7% were subjected to a papain-mediated plastein reaction in the absence or presence of one of the exogenous amino acids-Gly, Pro, and Hyp-to prepare four plastein modifiers, or mixed with one of three amino acids to prepare three mixtures. The assay results confirmed that the reaction reduced free NH2 for the modifiers and caused amino acid incorporation and peptide condensation. When RAW264.7 macrophages were exposed to the CH, modifiers, and mixtures, these samples promoted macrophage growth and phagocytosis in a dose-dependent manner. In addition, the CH shared similar activity in the cells as the mixtures, while the modifiers (especially the PCH-Hyp prepared with Hyp addition) exerted higher potential than CH, the mixtures, and PCH (the modifier prepared without amino acid addition). The plastein reaction thus enhanced CH bioactivity in the cells. When RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS), the inflammatory cells produced more lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) formation, and caused more four inflammatory mediators (NO, PGE2, TNF-α, and IL-6) and two anti-inflammatory mediators (TGF-β1 and IL-10). However, the PCH-Hyp, PCH, and CH at dose levels of 100 μg/mL could combat against the LPS-induced inflammation. Overall, the PCH-Hyp was more active than the CH and PCH in reducing LDH release, ROS formation, and the secretion of these inflammatory mediators, or in increasing the secretion of the anti-inflammatory mediators. The qPCR and Western blot analysis results further confirmed that these samples had anti-inflammatory effects on the stimulated cells by suppressing the LPS-induced activation of the NF-κB signaling pathway, via regulating the mRNA/miRNA expression of iNOS, IL-6, TNF-α, IL-1β, COX-2, TLR4, IL-10, TGF-β1, miR-181a, miR-30d, miR-155, and miR-148, as well as the protein expression of MyD88, p-IKKα, p-IκBα, p-NF-κB p65, and iNOS, involved in this signaling pathway. In addition, the immunofluorescence assay results revealed that these samples could block the LPS-mediated nuclear translocation of the p65 protein and displayed the same function as the NF-κB inhibitor BAY 11-7082. It was concluded that CH could be endowed with higher anti-inflammatory activity to the macrophages by performing a plastein reaction, particularly that in the presence of exogenous Hyp.
Collapse
Affiliation(s)
- Yun-Jiao Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
3
|
Ren LK, Guo QQ, Yang Y, Liu XF, Guan HN, Chen FL, Bian X, Zhang XM, Zhang N. Structural characterization and functional properties of CNPP, a byproduct formed during CPP preparation. J Food Sci 2021; 86:1845-1860. [PMID: 33908034 DOI: 10.1111/1750-3841.15717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
Casein nonphosphopeptide (CNPP), a byproduct formed during the preparation of casein phosphopeptide (CPP), is often discarded on a large scale. Although our previous studies have demonstrated the ameliorative effect of CNPP on muscle wasting disorders, its structure-function mechanism is still unclear. Therefore, considering the great influence of structural characteristics on function, this study aims to explain the potential mechanism by characterizing the physicochemical and functional properties of CNPP. The results of structural characterization indicated that CNPP was of low molecular weight and composed of the complete range of amino acids; it was particularly rich in leucine. Compared with casein, CNPP had a lower molecular size and total/free sulfhydryl content (reduced 2.44 and 2.02 µmol/g in CNPP, respectively). Additionally, Fourier transform infrared spectroscopic analysis revealed that enzymatic hydrolysis caused protein unfolding, and the content of β-turns and random coils reached 50.20% and 10.67%, respectively. Fluorescence-dependent detection of CNPP indicated a reduction of spectral intensity and the occurrence of a red shift. The changes in the structure of CNPP significantly affected its functional characteristics. CNPP has better solubility, foaming, and digestion properties than those of casein and whey protein. Specifically, the foam stability and emulsification properties decreased in the order of casein > CNPP > whey protein. The present study can provide a substantial basis for future application of CNPP as a functional ingredient against sarcopenia.
Collapse
Affiliation(s)
- Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Qing-Qi Guo
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiao-Fei Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Hua-Nan Guan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Feng-Lian Chen
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
4
|
Li Q, Fu Y, Zhang L, Otte J, Lametsch R. Plastein from hydrolysates of porcine hemoglobin and meat using Alcalase and papain. Food Chem 2020; 320:126654. [PMID: 32222661 DOI: 10.1016/j.foodchem.2020.126654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 11/26/2022]
Abstract
Plastein is defined as a protease-induced peptide aggregate and has been explored for over a century. This study investigated the effects of Alcalase and papain on plastein formation in protein hydrolysates of porcine hemoglobin and meat by measuring turbidity, particle size distribution, free amino groups and chemical interactions, as well as identifying the soluble peptides remaining in solution by LC-MS/MS. The results showed that Alcalase induced more peptide aggregation than papain in terms of increases in turbidity and particle size. Porcine hemoglobin was better than meat in inducing plastein formation in a short reaction time. Besides, covalent bonds involving peptide bonds and disulfide bonds were not crucial in the plastein reaction, instead a high proportion of hydrophobic interactions dominated the plastein. Not all peptides of both hydrolysates took part in plastein formation, and the regions of sequence that were prone to aggregation were visualized by Peptigram.
Collapse
Affiliation(s)
- Qian Li
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Yu Fu
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Longteng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jeanette Otte
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Mirzaei M, Mirdamadi S, Safavi M. Antioxidant activity and protective effects of Saccharomyces cerevisiae peptide fractions against H2O2-induced oxidative stress in Caco-2 cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00186-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Pepsin-catalyzed plastein reaction with tryptophan increases the in vitro activity of lactoferrin hydrolysates with BGC-823 cells. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Preparation of casein non-phosphopeptide–soybean polypeptide complex, its structure and emulsifying properties’ evaluation. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3167-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Sowmya K, Mala D, Bhat MI, Kumar N, Bajaj RK, Kapila S, Kapila R. Bio-accessible milk casein derived tripeptide (LLY) mediates overlapping anti- inflammatory and anti-oxidative effects under cellular (Caco-2) and in vivo milieu. J Nutr Biochem 2018; 62:167-180. [PMID: 30300836 DOI: 10.1016/j.jnutbio.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Inflammation and oxidative stress are closely linked patho-physiological processes which occur concurrently in many diseased conditions. Recently, interdependence between these two processes explains the antioxidant paradox associated with failure to select appropriate agents required for prevention of diseases known to be induced by oxidative stress. Present study established the overlapping anti-inflammatory and anti-oxidative potential along with bio-accessibility of milk casein derived tripeptide (LLY). Tripeptide exhibited anti-inflammatory response under ex vivo conditions by suppressing (P<.01) mice splenocytes proliferation and modulating their cytokines (IFN-γ, IL-10 and TGF-β) with improved phagocytosis of peritoneal macrophages. Conversely, tripeptide displayed extraordinary radical scavenging ability and cellular anti-oxidative potential using chemical assays and H2O2 induced oxidative stress model on Caco-2 cells. Under cellular assessment, on one hand tripeptide inhibited (P<.01) intracellular ROS generation and reduced MDA and protein carbonyls but on the other also increased (P<.01) the activity of anti-oxidative enzyme, catalase without much effect on SOD and GPx. This anti-oxidative potential was further established by studying relative expression of genes (Nrf-2 and Keap1) and Nrf-2 nuclear translocation associated with anti-oxidative signaling in Caco-2 cells. Bio-accessibility of tripeptide and its intact transport across Caco-2 cell monolayer was also found to be 1.72±0.22% through PepT1 mediated transport mechanism. Besides, tripeptide displayed strong anti-oxidative and anti-inflammatory potential under in vivo conditions in mice against ethanol induced oxidative stress by elevating (P<.01) liver GSH content and by decreasing (P<.01) the activities of anti-oxidative enzymes, MDA along with reduced expression of CYP2E1, PPAR-α, TNF-α and COX-2 genes than ethanol control.
Collapse
Affiliation(s)
- Kandukuri Sowmya
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Dev Mala
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohd Iqbal Bhat
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Naveen Kumar
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Bajaj
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
9
|
Buffalo Milk Casein Derived Decapeptide (YQEPVLGPVR) Having Bifunctional Anti-inflammatory and Antioxidative Features Under Cellular Milieu. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9708-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Release of Proteolysis Products with ACE-Inhibitory and Antioxidant Activities in Probiotic Yogurt Containing Different Levels of Fat and Prebiotics. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9679-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Casein Glycomacropeptide Hydrolysates Exert Cytoprotective Effect against Cellular Oxidative Stress by Up-Regulating HO-1 Expression in HepG2 Cells. Nutrients 2017; 9:nu9010031. [PMID: 28098837 PMCID: PMC5295075 DOI: 10.3390/nu9010031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/02/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is considered as an important mediator in the progression of metabolic disorders. The objective of this study was to investigate the potential hepatoprotective effects and mechanisms of bovine casein glycomacropeptide hydrolysates (GHP) on hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Results showed that GHP significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation and cell viability reduction in a dose-dependent manner. Further, GHP concentration-dependently induced heme oxygenase-1 (HO-1) expression and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation. Moreover, pretreatment of GHP increased the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2), which were shown to contribute to Nrf2-mediated HO-1 expression. Taken together, GHP protected HepG2 cells from oxidative stress by activation of Nrf2 and HO-1 via p38 MAPK and ERK1/2 signaling pathways. Our findings indicate that bovine casein glycomacropeptide hydrolysates might be a potential ingredient in the treatment of oxidative stress-related disorders and further studies are needed to investigate the protective effects in vivo.
Collapse
|
12
|
Old products, new applications? Considering the multiple bioactivities of plastein in peptide-based functional food design. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Oh NS, Young Lee J, Lee HA, Joung JY, Shin YK, Kim SH, Kim Y, Lee KW. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system. J Dairy Sci 2016; 99:947-958. [DOI: 10.3168/jds.2015-10009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
|
14
|
Udenigwe CC, Mohan A, Wu S. Peptide Aggregation during Plastein Reaction Enhanced Bile Acid-Binding Capacity of Enzymatic Chicken Meat Hydrolysates. J Food Biochem 2015. [DOI: 10.1111/jfbc.12139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chibuike C. Udenigwe
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| | - Aishwarya Mohan
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| | - Sihong Wu
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| |
Collapse
|
15
|
Fu Y, Young JF, Dalsgaard TK, Therkildsen M. Separation of angiotensin I-converting enzyme inhibitory peptides from bovine connective tissue and their stability towards temperature, pH and digestive enzymes. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12771] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Fu
- Department of Food Science; Aarhus University; Blichers Allé 20 8830 Tjele Denmark
| | - Jette F. Young
- Department of Food Science; Aarhus University; Blichers Allé 20 8830 Tjele Denmark
| | - Trine K. Dalsgaard
- Department of Food Science; Aarhus University; Blichers Allé 20 8830 Tjele Denmark
| | | |
Collapse
|
16
|
Gong M, Mohan A, Gibson A, Udenigwe CC. Mechanisms of plastein formation, and prospective food and nutraceutical applications of the peptide aggregates. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2015; 5:63-69. [PMID: 28626684 PMCID: PMC5466193 DOI: 10.1016/j.btre.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 10/31/2022]
Abstract
Plastein is a protease-induced peptide aggregate with prospective application in enhancing the nutritional quality of proteins and debittering protein hydrolysates. These properties are yet to be applied in product development possibly due to economic considerations (production cost vs. product yields). This paper reviews currently proposed mechanisms of plastein formation including condensation, transpeptidation and physical interaction of aggregating peptides. Emerging findings indicate that plastein possesses bioactivities, thereby expanding its prospective application. The role of proteases in inducing peptide interaction in plastein remains unclear. Understanding the protease function will facilitate the development of efficient proteases and scalable industrial processes for plastein production.
Collapse
Affiliation(s)
| | | | | | - Chibuike C. Udenigwe
- Health and Bioproducts Research Laboratory, Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
17
|
Zhang ML, Zhao XH. In Vitro
Calcium-Chelating and Platelet Anti-Aggregation Activities of Soy Protein Hydrolysate Modified by the Alcalase-Catalyzed Plastein Reaction. J Food Biochem 2014. [DOI: 10.1111/jfbc.12063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mei-Ling Zhang
- Key Laboratory of Dairy Science; Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science; Ministry of Education; Northeast Agricultural University; Harbin 150030 China
- Department of Food Science; Northeast Agricultural University; Harbin 150030 China
| |
Collapse
|