1
|
Li R, Cui S, Song T, Zhang J, Zhang H, Wang J. Research Progress on Cereal Protein-Based Films: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4483-4496. [PMID: 39960453 DOI: 10.1021/acs.jafc.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Recently, to address plastic pollution and food safety issues, the development of biodegradable materials has become a research hotspot. Cereal proteins have been widely used in natural biodegradable packaging films due to their excellent hydrophobicity and film-forming ability, including wheat gluten protein, zein, rice protein, and oat protein. Although pure cereal protein-based films have the disadvantages of insufficient stability and lack of functionality, a variety of measures have been taken to enhance the performance of the films to expand the application range of cereal protein-based films. This Review briefly reviews the fabrication process of cereal protein-based films. The interaction of various additives (plasticizers, biopolymers, nanoparticles, bioactive ingredients, and indicators) with cereal proteins is highlighted. Four methods for fabricating cereal protein-based films (casting, extrusion, electrospinning, and 3D printing) are summarized. Additionally, the impact of several novel technologies on the performance improvement of cereal protein-based films, including ultrasonic, cold plasma, and high-pressure treatment, is discussed. Finally, the application scenarios of cereal protein-based films in active and smart food packaging are discussed, and the challenges of stability and safety of these packaging films are pointed out. In conclusion, this Review identifies the development potential of cereal protein-based films in food packaging fields.
Collapse
Affiliation(s)
- Rumeng Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Sa Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Junhui Zhang
- COFCO Nutrition and Health Research Institute Co. Ltd., Beijing 102209, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
2
|
Samborska K, Budziak-Wieczorek I, Matwijczuk A, Witrowa-Rajchert D, Gagoś M, Gładyszewska B, Karcz D, Rybak K, Jaskulski M, Barańska A, Jedlińska A. Powdered plant beverages obtained by spray-drying without carrier addition-physicochemical and chemometric studies. Sci Rep 2024; 14:4488. [PMID: 38396043 PMCID: PMC10891148 DOI: 10.1038/s41598-024-54978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
Plant-based beverages (PBs) are currently gaining interest among consumers who are seeking alternative sustainable options to traditional dairy drinks. The study aimed to obtain powdered plant beverages without the addition of carriers by spray drying method to implement them in the future as an alternative to the liquid form of dairy drinks. Some of the most well-known commercial beverages sources like soy, almond, rice and oat were analyzed in this work. The effect of different treatments (concentration, addition of oat fiber) and two approaches od spray drying (conventional high temperature spray drying-SD, and dehumidified air spray drying at low temperature-DASD) were presented. Moreover, moisture content, water activity, particle morphology and size of obtained powders were analyzed. It was possible to obtain PBs without the addition of carriers, although the drying yield of four basic beverages was low (16.1-37.4%). The treatments and change in spray drying approach enhanced the drying yield, especially for the concentrated beverage dried using DASD (59.2%). Additionally, Fourier Transform Infrared (FTIR) spectroscopy was applied to evaluate the differences in chemical composition of powdered PBs. FTIR analysis revealed differences in the range of the absorption frequency of amide I, amide II (1700-1500 cm-1) and carbohydrate region (1200-900 cm-1). Principal component analysis (PCA) was carried out to study the relationship between spray dried plant beverages samples based on the fingerprint region of FTIR spectra, as well as the physical characteristics. Additionally, hierarchical cluster analysis (HCA) was employed to explore the clustering of the powders.
Collapse
Affiliation(s)
- Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Iwona Budziak-Wieczorek
- Department of Chemistry, Faculty of Life Sciences and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033, Lublin, Poland.
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Mariusz Gagoś
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Bożena Gładyszewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics, Krakow University of Technology, 31-155, Krakow, Poland
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033, Lublin, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Maciej Jaskulski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Łódź, Poland
| | - Alicja Barańska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Aleksandra Jedlińska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
3
|
Danciu CA, Tulbure A, Stanciu MA, Antonie I, Capatana C, Zerbeș MV, Giurea R, Rada EC. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023; 12:3770. [PMID: 37893664 PMCID: PMC10606821 DOI: 10.3390/foods12203770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In an increasingly resource-constrained era, using waste and by-products from grain processing has a wide appeal. This is due to the nutritive value and economic aspects of this process and due to its compatibility with the trend towards more sustainable food systems. Following the fundamentals of circular economy, a current need is the effective utilization of grain waste and by-products for conversion into value-added products in the food industry. The aim of this study is twofold: (1) using bibliometrics and the literature found in various databases, we aim to understand the progress of valorizing grain waste and by-products in human nutrition. The literature within various databases, namely, Google Scholar, Web of Science, and Elsevier Scopus, has been evaluated for its merits and values. (2) We aim to explore knowledge-based strategies by reviewing the literature concerning the possible use of grain waste and by-products for the food processing industry, reducing the burden on virgin raw materials. The review allowed us to unlock the latest advances in upcycling side streams and waste from the grain processing industry.
Collapse
Affiliation(s)
- Cristina-Anca Danciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Anca Tulbure
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mirela-Aurora Stanciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Iuliana Antonie
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Ciprian Capatana
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mihai Victor Zerbeș
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Ramona Giurea
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, 46 Via G.B. Vico, 21100 Varese, Italy;
| |
Collapse
|
4
|
Vieira Nogueira P, Vilas Boas AC, Ferreira Suárez N, Arruda de Abreu RA, de Carvalho CV, Salles Pio LA, Pasqual M. Composition and Functional Properties of Banana Tree Male Inflorescence Flour. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | | | | | | | - Moacir Pasqual
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
5
|
Wang N, Cui X, Duan Y, Yang S, Wang P, Saleh ASM, Xiao Z. Potential health benefits and food applications of rice bran protein: research advances and challenges. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Na Wang
- College of Light Industry, Liaoning University, Shenyang, China
| | - Xiaotong Cui
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yumin Duan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Shu Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Ahmed S. M. Saleh
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Ramírez‐Bolaños S, Pérez‐Jiménez J, Díaz S, Robaina L. A potential of banana flower and pseudo‐stem as novel ingredients rich in phenolic compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Ramírez‐Bolaños
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| | - Jara Pérez‐Jiménez
- Department of Metabolism and Nutrition Institute of Food Science, Technology and Nutrition (ICTAN‐CSIC) José Antonio Novais 10 Madrid 28040 Spain
| | - Sara Díaz
- Fabricación Integrada y Avanzada Research Group Departamento de Ingeniería de Procesos Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria 35017 Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA) IU‐ECOAQUA Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n Telde 35214 Spain
| |
Collapse
|
7
|
Perrechil F, Louzi VC, Alves da Silva Paiva L, Valentin Natal GS, Braga MB. Evaluation of modified starch and rice protein concentrate as wall materials on the microencapsulation of flaxseed oil by freeze-drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Skendi A, Zinoviadou KG, Papageorgiou M, Rocha JM. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020; 9:E1243. [PMID: 32899587 PMCID: PMC7554810 DOI: 10.3390/foods9091243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers' spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - Kyriaki G. Zinoviadou
- Department of Food Science and Technology, Perrotis College, American Farm School, GR-57001 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - João M. Rocha
- REQUIMTE—Chemistry and Technology Network, Green Chemistry Laboratory (LAQV), Department of Chemistry and Biochemistry, Faculty of Sciences—University of Porto (FCUP), Rua do Campo Alegre, s/n., P-4169-007 Porto, Portugal; or
| |
Collapse
|
9
|
Ghanghas N, M. T. M, Sharma S, Prabhakar PK. Classification, Composition, Extraction, Functional Modification and Application of Rice (Oryza sativa) Seed Protein: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Neeraj Ghanghas
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Mukilan M. T.
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Shikha Sharma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Pramod K. Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| |
Collapse
|
10
|
Effect of protein aggregates on properties and structure of rice bran protein-based film at different pH. Journal of Food Science and Technology 2019; 56:5116-5127. [PMID: 31741536 DOI: 10.1007/s13197-019-03984-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/04/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Rice bran protein (RBP) aggregates were prepared by heating of RBP solution at 90 °C for 4 h at pH 2, 7, or 11 and used for preparing of packaging films. The structure and properties of RBP aggregates and RBP-based films were characterized with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transmission electron microscopy, scanning electron microscope, differential scanning calorimetry, Fourier transform infrared spectroscopy and circular dichroism. The results showed formation of fibrillar, globular, and large molecular protein aggregates during the heating at pH 2, 7 and 11. The heat-aggregated RBP-based films exhibited lower opacity, moisture content, water solubility, and water vapor permeability than those of untreated RBP-based films. Also, improved mechanical and thermal properties were found for the heat-aggregated RBP-based films. In addition, the heat-aggregated RBP-based film at pH 11 showed homogenous and smooth surface as well as compact appearance compared with the untreated RBP-based films or heat-aggregated RBP-based film at pH 2 or 7. Furthermore, the secondary structure of heat-aggregated RBP film exhibited an increase in β-sheet content and molecular interactions through non-covalent bonds. The obtained results indicated that formation of protein aggregates could improve physical, mechanical, and thermal properties of RBP-based film, especially at pH 11.
Collapse
|
11
|
Kupski L, Telles AC, Gonçalves LM, Nora NS, Furlong EB. Recovery of functional compounds from lignocellulosic material: An innovative enzymatic approach. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Guimarães IC, dos Reis KC, Menezes EGT, Borges PRS, Rodrigues AC, Leal R, Hernandes T, de Carvalho EHN, Vilas Boas EVDB. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots. Int J Food Sci Nutr 2016; 67:141-52. [PMID: 26857136 DOI: 10.3109/09637486.2015.1137890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC.
Collapse
Affiliation(s)
- Isabela Costa Guimarães
- a Food Science Department , Federal University of Lavras , Lavras , Brazil ;,b Federal University of Viçosa, Campus Rio Paranaíba , Rio Paranaíba , Brazil
| | | | - Evandro Galvão Tavares Menezes
- a Food Science Department , Federal University of Lavras , Lavras , Brazil ;,b Federal University of Viçosa, Campus Rio Paranaíba , Rio Paranaíba , Brazil
| | | | | | - Renato Leal
- a Food Science Department , Federal University of Lavras , Lavras , Brazil
| | - Thais Hernandes
- a Food Science Department , Federal University of Lavras , Lavras , Brazil
| | | | | |
Collapse
|
13
|
Armendáriz-Mireles EN, Rocha-Rangel E, Caballero-Rico F, Ramírez-de-León JA, Vázquez M. Photocurrent generation by dye-sensitized solar cells using natural pigments. Biotechnol Appl Biochem 2015; 64:143-148. [PMID: 26466549 DOI: 10.1002/bab.1449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022]
Abstract
The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (Voc ) of 0.72 V in 2 cm2 , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells.
Collapse
Affiliation(s)
| | - Enrique Rocha-Rangel
- Department of Manufacturing of Advanced Materials, Polytechnic University of Victoria, Victoria, Tamaulipas, México
| | - Frida Caballero-Rico
- Knowledge Management Center, Autonomous University of Tamaulipas, Victoria, Tamaulipas, México
| | | | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|