1
|
Wu Y, Wu Y, Zhao Y, Xiang H, Hao Z, Wang Q, Wang Y. Enhanced stability and rheological properties of myofibrillar proteins emulsions conferred by oat β-glucan: Insights into structural and interfacial interactions. Food Chem 2025; 476:143426. [PMID: 39983475 DOI: 10.1016/j.foodchem.2025.143426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
The effect of oat β-glucan (OG) on the structure, interfacial behavior and emulsion rheological properties of sea bass myofibrillar protein (MP) was investigated. Fourier transform infrared spectroscopy demonstrated that adding OG decreased the α-helix content in MP from 27% to 22% and increased the β-sheet content, suggesting that OG facilitated MP unfolding. When the OG content was 1.2%, the interfacial tension decreased by approximately 20%, and the diffusion rate increased by approximately 1.5-fold. These changes augmented the physical stability of emulsions. Rheological analysis showed that 3% OG promoted the energy storage modulus (G') of the emulsion. These changes enhanced MP adsorption and rearrangement at the oil-water interface, which enhanced viscoelasticity in the interfacial film and further increased the emulsion stability. These findings augment the understanding of protein-polysaccharide interactions and provide guidance for improving protein emulsion stability.
Collapse
Affiliation(s)
- Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China.
| | - Yamei Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhiming Hao
- Tropical agriculture and Forestry College, Guangdong Agriculture Industry Business Polytechnic, Guangzhou 510000, China
| | - Qing Wang
- Fujian Minwei Food Co. Fuding, 355200, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China.
| |
Collapse
|
2
|
Cao H, Li R, Shi M, Song H, Li S, Guan X. Promising effects of β-glucans on gelation in protein-based products: A review. Int J Biol Macromol 2024; 256:127574. [PMID: 37952797 DOI: 10.1016/j.ijbiomac.2023.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Gel property is one of the most important abilities to endow protein-based food products with a unique texture and higher overall acceptability. Cereal β-glucan (BG) is widely applied in protein-based products to improve the stability of the protein gel by increasing water holding capacity, storage modulus (G'), loss modulus (G") and linking with protein through more exposed sites, making it easier to form a stronger three-dimensional gel network. In addition, BG may be cross-linked with proteins, or physically embedded and covered in protein network structures, interacting with proteins mainly through non-covalent bonds including hydrogen bonding and electrostatic interaction. Furthermore, the transition of the α-helix to the β-form in the protein secondary structure also contributes to the stability of the protein gel. The practical applications of BG from different cereals in protein-based products are summarized, and the rheological properties, microstructure of protein as well as the underlying interaction mechanisms between BG and protein are discussed. In conclusion, cereal BG is a promising polysaccharide in developing nutritional protein-based products with better sensory properties.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| |
Collapse
|
3
|
He X, Zhao H, Xu Y, Yi S, Li J, Li X. Synergistic effects of oat β-glucan combined with ultrasound treatment on gel properties of silver carp surimi. ULTRASONICS SONOCHEMISTRY 2023; 95:106406. [PMID: 37088028 PMCID: PMC10457573 DOI: 10.1016/j.ultsonch.2023.106406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The effect of oat β-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
He X, Lv Y, Li X, Yi S, Zhao H, Xu Y, Li J. Effect of oat β-glucan on gel properties and protein conformation of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3367-3375. [PMID: 36840432 DOI: 10.1002/jsfa.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat β-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to β-sheet and β-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| |
Collapse
|
5
|
Ma Y, Ye F, Chen J, Ming J, Zhou C, Zhao G, Lei L. The microstructure and gel properties of linseed oil and soy protein isolate based-oleogel constructed with highland barley β-glucan and its application in luncheon meat. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
See Toh CJY, Bi X, Lee HW, Yeo MTY, Henry CJ. Is mushroom polysaccharide extract a better fat replacer than dried mushroom powder for food applications? Front Nutr 2023; 10:1111955. [PMID: 36819704 PMCID: PMC9935597 DOI: 10.3389/fnut.2023.1111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction β-glucans found in the cell walls of mushrooms can be a beneficial food additive in replacing fat in commercial food products. Methods Four commonly consumed mushroom species in Singapore, i.e., Pleurotus ostreatus spp., Lentinus edodes, Agaricus bisporus, and Flammulina velutipes were profiled for the β-glucan content in the lyophilized form and ultrasonicated assisted extracted form. Both forms were added into chicken patties, which were characterized for the moisture, cooking loss, texture, color, and chemically analyzed for the protein, crude fat, and fatty acid profiles with gas chromatography mass spectrometry (GC-MS). Results and discussion Pleurotus Ostreatus spp. had the highest β-glucan of 29.8 ± 0.7 g/100 g in the pure powder form and 15.9 ± 0.3 g/100 g from the extract. Crude fat in 100% fat substituted patties was lowest in Flammulina velutipes extract enriched patties and least in A. bisporus pure powder patties. Additionally, fat replacement with A. bisporus extract and powder forms resulted in the highest polyunsaturated fatty acid profile of 49.6 ± 1.9 mg/100 g patty and 79.9 ± 4.5 mg/100 g patty, respectively. Chicken patties with added mushroom extract were notable in retaining moisture, cooking yield and its structure. Fat substitution with mushroom powder was also conducted, satisfactory results indicated a possibility as a better fat replacer that is easily processed and an efficient alternative to β-glucan extract. With increasing demand for low fat foods with acceptable organoleptic properties, our study demonstrates that the inclusion of dry mushroom powder has the ability to mimic the "fattiness" of chicken patties.
Collapse
Affiliation(s)
- Cheryl Jie Yi See Toh
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyan Bi
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Wen Lee
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michelle Ting Yun Yeo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Caseiro C, Dias JNR, de Andrade Fontes CMG, Bule P. From Cancer Therapy to Winemaking: The Molecular Structure and Applications of β-Glucans and β-1, 3-Glucanases. Int J Mol Sci 2022; 23:3156. [PMID: 35328577 PMCID: PMC8949617 DOI: 10.3390/ijms23063156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Joana Nunes Ribeiro Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | | | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (C.C.); (J.N.R.D.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
8
|
Słowiński M, Miazek J, Dasiewicz K, Cegiełka A. An attempt to use a barley fibre preparation containing β‐glucan in the production of functional canned meat. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mirosław Słowiński
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences 166 Nowoursynowska Street Warsaw 02‐787 Poland
| | - Joanna Miazek
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences 166 Nowoursynowska Street Warsaw 02‐787 Poland
| | - Krzysztof Dasiewicz
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences 166 Nowoursynowska Street Warsaw 02‐787 Poland
| | - Aneta Cegiełka
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences 166 Nowoursynowska Street Warsaw 02‐787 Poland
| |
Collapse
|
9
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
10
|
Biotechnological Addition of β-Glucans from Cereals, Mushrooms and Yeasts in Foods and Animal Feed. Processes (Basel) 2021. [DOI: 10.3390/pr9111889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Varied cereal plants including, mushrooms, yeast, bacteria and algae are important sources of β-glucans, and many extraction procedures have been used in order to recover these valuable naturally occurring polysaccharides. The rheological and molecular properties of β-glucans can be utilized to be incorporated into various foods and to offer properties extremely beneficial to human health. Their functional effects are mainly determined by their molecular and structural characteristics. Consumption of foods fortified and enriched with β-glucans can contribute to the treatment of certain chronic diseases. Reduced cholesterol, cardiovascular and diabetic risk and moderate glycemic response of foods have been recorded with the consumption of these biologically active compounds. In addition, β-glucans are characterized by anti-cancer, antioxidant, anti-inflammatory and antiviral activities. As β-glucans interact with the foods in which they are incorporated, this review aims to discuss recent applications with quality and nutritional results of β-glucans incorporation with foods such as beverages, dairy, bakery, meat and pasta products, as well as their addition in animal feeds and their uses in other fields such as medicine.
Collapse
|
11
|
Santos JMD, Ignácio EO, Bis-Souza CV, Silva-Barretto ACD. Performance of reduced fat-reduced salt fermented sausage with added microcrystalline cellulose, resistant starch and oat fiber using the simplex design. Meat Sci 2021; 175:108433. [PMID: 33454448 DOI: 10.1016/j.meatsci.2021.108433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
The search for ingredients that improve technological and nutritional aspects of food has been intensified in recent years by both researchers and industry. Thus, the aim of this study was to evaluate fermented sausages with simultaneous reduction of fat (25%) and salt (25% KCl; 75% NaCl) using up to 2% of three different dietary fiber: microcrystalline cellulose (MCC), resistant starch (RS) and oat fiber (OF). Technological and sensory evaluations used the simplex-centroid mixture design. The dietary fiber added did not affect the weight loss, pH values and sensory acceptance. Models were obtained for water activity, lactic acid bacteria, hardness, chewiness and TBARS values. When included in combination the three dietary fiber helped reduce water activity, inclusion of MCC increased the population of lactic acid bacteria, and inclusion of OF with MCC demonstrated an antioxidant effect and improved hardness and chewiness. These dietary fibers are ingredients that can contribute to the development of reduced fat - reduced salt fermented sausage.
Collapse
Affiliation(s)
- João Marcos Dos Santos
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000, São José do Rio Preto, SP, Brazil
| | - Eduardo Oliveira Ignácio
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000, São José do Rio Preto, SP, Brazil
| | - Camila Vespúcio Bis-Souza
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000, São José do Rio Preto, SP, Brazil
| | - Andrea Carla da Silva-Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Pintado T, Ruiz-Capillas C, Jiménez-Colmenero F, Herrero AM. Impact of Culinary Procedures on Nutritional and Technological Properties of Reduced-Fat Longanizas Formulated with Chia ( Salvia hispanica L.) or Oat ( Avena sativa L.) Emulsion Gel. Foods 2020; 9:E1847. [PMID: 33322421 PMCID: PMC7762967 DOI: 10.3390/foods9121847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
This paper evaluates how grilling, a traditional culinary procedure for fresh meat products, affects the composition and technological properties of healthy longanizas formulated with chia (Salvia hispanica L.) (C-RF) and oat (Avena sativa L.) (O-RF) emulsion gels (EGs) as animal fat replacers. The use of EGs, regardless of whether they contain chia or oat, improved longaniza performance during cooking as they lost less (p < 0.05) water and fat. The composition of cooked sausages was affected by their formulation, particularly those with chia EG (C-RF) which featured the highest polyunsaturated fatty acid content, mainly due to the higher level of α-linolenic fatty acid (1.09 g/100 g of product). Chia and oat EGs in C-RF and O-RF allow longanizas to be labeled with nutritional and health claims under European law. In general, this culinary procedure increases (p < 0.05) the lightness, lipid oxidation and texture parameters of all samples.
Collapse
Affiliation(s)
| | | | | | - Ana M. Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (T.P.); (C.R.-C.); (F.J.-C.)
| |
Collapse
|