1
|
Pauly R, Alexander Feltus F. Simplified detection of genetic background admixture using artificial intelligence. Clin Genet 2024; 106:247-257. [PMID: 38561851 DOI: 10.1111/cge.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Admixture refers to the mixing of genetic ancestry from different populations. Admixture is important for genomic medicine because it can affect how an individual responds to certain medications, how they metabolize drugs, and susceptibility to certain diseases. For example, some genetic variants associated with drug metabolism and response may be more common in certain populations, and individuals with admixed ancestry may have a different frequency of these variants than individuals from the ancestral populations. Understanding the patterns of admixture in a population can also help researchers identify new genetic variants associated with diseases or traits and develop more personalized and targeted treatments. In this study, we compared and classified the known and self-reported genetic backgrounds from 1000 Genomes Project and admixed samples from GTEx projects using supervised, unsupervised and statistical classification methodologies. We developed a novel tool called Admix-AI that uses a one-dimensional convolutional neural network to understand and classify admixed genetic backgrounds using 213 DNA-marker based genetic background labels. Admix-AI can be used to discover admixed proportions in samples and ultimately aid personalized genomic medicine by identifying specific biomarker systems. We compared Admix-AI to the existing admixture categorization software and found our tool to be computationally faster with 2× speedup and streamlined usage. Admix-AI is available as open-source code under GPL version 3.0 license at https://github.com/rpauly/Admix-AI.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, South Carolina, USA
| | - Frank Alexander Feltus
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, South Carolina, USA
- Genetics and Biochemistry Department, Clemson University, Clemson, South Carolina, USA
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, USA
| |
Collapse
|
2
|
Ha M, Yang Y, Wu M, Gong T, Chen Z, Yu L. Astaxanthin could regulate the gut-kidney axis to mitigate kidney injury in high-fat diet/streptozotocin-induced diabetic mice. INT J VITAM NUTR RES 2024; 94:187-197. [PMID: 37434308 DOI: 10.1024/0300-9831/a000786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Accumulating evidences have shown the beneficial effects of astaxanthin (AST) supplementation on metabolic diseases prevention and treatment. The goal of present study was to reveal the favorable interactions among AST supplementation, gut microbiota, and kidneys in vivo, so as to attenuate kidney impairment in diabetic mice. Twenty C57BL/6J mice were assigned to a normal control group and a diabetic model group induced by a high-fat diet plus low-dose streptozotocin, and then the diabetic mice were fed with a high-fat diet without or with AST [0.01% (AST_a) or 0.02% (AST_b)] for 12 weeks. When compared to the diabetes kidney disease (DKD) group, AST supplementation delayed the renal pathological progression, reduced fasting blood glucose (AST_b: 1.53-fold, p<0.05), repressed levels of lipopolysaccharide (LPS; AST_a: 1.24-fold, p=0.008; AST_b: 1.43-fold, p<0.001) and TMAO (AST_a: 1.51-fold, p=0.001; AST_b: 1.40-fold, p=0.003), inhibited IL-6 (AST_a: 1.40-fold, p=0.004; AST_b: 1.57-fold, p=0.001) and reactive oxygen species (ROS; AST_a: 1.30-fold, p=0.004; AST_b: 1.53-fold, p<0.001), as well as regulated the Sirt1/PGC-1α/NFκB p65 signaling pathway. Moreover, the results of 16S rRNA gene-based Illumina deep sequencing in each group revealed that dietary AST supplementation also favorably modulated the gut microbiota compared with the DKD group, as evidenced by the inhibition of the harmful bacteria Clostridium_sensu_stricto_1, Romboutsia, and Coriobacteriaceae_UCG-002, and the enhancement of the probiotics such as Lachnospiraceae_NK4A136_group, Roseburia, and Ruminococcaceae. Taken together, dietary AST supplementation could protect kidneys against inflammation and oxidative stress by adjusting the gut-kidney axis in diabetic mice.
Collapse
Affiliation(s)
- Mei Ha
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Mingzhu Wu
- Key Lab of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China
| | - Ting Gong
- Chongqing Medical and Pharmaceutical College, PR China
| | - Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, PR China
| | - Luo Yu
- School of Nursing, Army Medical University, Chongqing, PR China
| |
Collapse
|
3
|
Matz LM, Shah NS, Porterfield L, Stuyck OM, Jochum MD, Kayed R, Taglialatela G, Urban RJ, Buffington SA. Microbial determinants of dementia risk in subjects of Mexican descent with type 2 diabetes living in South Texas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.20.24304637. [PMID: 38562743 PMCID: PMC10984044 DOI: 10.1101/2024.03.20.24304637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Type 2 diabetes (T2D) is a common forerunner of neurodegeneration and dementia, including Alzheimer's Disease (AD), yet the underlying mechanisms remain unresolved. Individuals of Mexican descent living in South Texas have increased prevalence of comorbid T2D and early onset AD, despite low incidence of the predisposing APOE-e4 variant and an absence of the phenotype among relatives residing in Mexico - suggesting a role for environmental factors in coincident T2D and AD susceptibility. Here, in a small clinical trial, we show dysbiosis of the human gut microbiome could contribute to neuroinflammation and risk for AD in this population. Divergent Gastrointestinal Symptom Rating Scale (GSRS) responses, despite no differences in expressed dietary preferences, provided the first evidence for altered gut microbial ecology among T2D subjects (sT2D) versus population-matched healthy controls (HC). Metataxonomic 16S rRNA sequencing of participant stool revealed a decrease in alpha diversity of sT2D versus HC gut communities and identified BMI as a driver of gut community structure. Linear discriminant analysis effect size (LEfSe) identified a significant decrease in the relative abundance of the short-chain fatty acid-producing taxa Lachnospiraceae, Faecalibacterium, and Alistipes and an increase in pathobionts Escherichia-Shigella, Enterobacter, and Clostridia innocuum among sT2D gut microbiota, as well as differentially abundant gene and metabolic pathways. These results suggest characterization of the gut microbiome of individuals with T2D could identify key actors among "disease state" microbiota which may increase risk for or accelerate the onset of neurodegeneration. Furthermore, they identify candidate microbiome-targeted approaches for prevention and treatment of neuroinflammation in AD.
Collapse
Affiliation(s)
- Lisa M Matz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Nisarg S Shah
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Laura Porterfield
- Department of Family Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Olivia M Stuyck
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Randall J Urban
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Balvers M, de Goffau M, van Riel N, van den Born BJ, Galenkamp H, Zwinderman K, Nieuwdorp M, Levin E. Ethnic variations in metabolic syndrome components and their associations with the gut microbiota: the HELIUS study. Genome Med 2024; 16:41. [PMID: 38509598 PMCID: PMC10953122 DOI: 10.1186/s13073-024-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The occurrence of metabolic syndrome (MetS) and the gut microbiota composition are known to differ across ethnicities yet how these three factors are interwoven is unknown. Also, it is unknown what the relative contribution of the gut microbiota composition is to each MetS component and whether this differs between ethnicities. We therefore determined the occurrence of MetS and its components in the multi-ethnic HELIUS cohort and tested the overall and ethnic-specific associations with the gut microbiota composition. METHODS We included 16,209 treatment naïve participants of the HELIUS study, which were of Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish, and Moroccan descent to analyze MetS and its components across ethnicities. In a subset (n = 3443), the gut microbiota composition (16S) was associated with MetS outcomes using linear and logistic regression models. RESULTS A differential, often sex-dependent, prevalence of MetS components and their combinations were observed across ethnicities. Increased blood pressure was commonly seen especially in Ghanaians, while South-Asian Surinamese and Turkish had higher MetS rates in general and were characterized by worse lipid-related measures. Regarding the gut microbiota, when ethnic-independent associations were assumed, a higher α-diversity, higher abundance of several ASVs (mostly for waist and triglyceride-related outcomes) and a trophic network of ASVs of Ruminococcaceae, Christensenellaceae, and Methanobrevibacter (RCM) bacteria were associated with better MetS outcomes. Statistically significant ethnic-specific associations were however noticed for α-diversity and the RCM trophic network. Associations were significant in the Dutch but not always in all other ethnicities. In Ghanaians, a higher α-diversity and RCM network abundance showed an aberrant positive association with high blood pressure measures compared to the other ethnicities. Even though adjustment for socioeconomic status-, lifestyle-, and diet-related variables often attenuated the effect size and/or the statistical significance of the ethnic-specific associations, an overall similar pattern across outcomes and ethnicities remained. CONCLUSIONS The occurrence of MetS characteristics among ethnicities is heterogeneous. Both ethnic-independent and ethnic-specific associations were identified between the gut microbiota and MetS outcomes. Across multiple ethnicities, a one-size-fits-all approach may thus be reconsidered in regard to both the definition and/or treatment of MetS and its relation to the gut microbiota.
Collapse
Affiliation(s)
- Manon Balvers
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcus de Goffau
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands
| | - Natal van Riel
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koos Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands.
| |
Collapse
|
5
|
Farsijani S, Cauley JA, Peddada SD, Langsetmo L, Shikany JM, Orwoll ES, Ensrud KE, Cawthon PM, Newman AB. Relation Between Dietary Protein Intake and Gut Microbiome Composition in Community-Dwelling Older Men: Findings from the Osteoporotic Fractures in Men Study (MrOS). J Nutr 2023; 152:2877-2887. [PMID: 36205552 PMCID: PMC9839986 DOI: 10.1093/jn/nxac231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Little is known about the association of specific nutrients, especially proteins, on age-related gut dysbiosis. OBJECTIVES To determine the associations between the quantity and sources (vegetable and animal) of dietary protein intake and gut microbiome composition in community-dwelling older men. METHODS We performed a cross-sectional analysis on 775 older men from the Osteoporotic Fractures in Men Study (MrOS) (age 84.2 ± 4.0 y) with available dietary information and stool samples at visit 4 (2014-2016). Protein intake was estimated from a brief FFQ and adjusted to total energy intake. The gut microbiome composition was determined by 16S (v4) sequencing (processed by DADA2 and SILVA). A total of 11,534 amplicon sequence variants (ASVs) were identified and assigned to 21 phyla with dominance of Firmicutes (45%) and Bacteroidetes (43%). We performed α-diversity, β-diversity, and taxa abundance (by Analysis of Compositions of Microbiomes with Bias Correction [ANCOM-BC]) to determine the associations between protein intake and the gut microbiome. RESULTS Median protein intake was 0.7 g/(kg body weight · d). Participants with higher energy-adjusted protein intakes had higher Shannon and Chao1 α-diversity indices (P < 0.05). For β-diversity analysis, participants with higher protein intakes had a different center in weighted and unweighted UniFrac Principal Co-ordinates Analysis (PCoA) compared with those with lower intake (P < 0.05), adjusted for age, race, education, clinical center, batch number, fiber and energy intake, weight, height, and medications. Similarly, higher protein consumptions from either animal or vegetable sources were associated with higher gut microbiome diversity. Several genus-level ASVs, including Christensenellaceae, Veillonella, Haemophilus, and Klebsiella were more abundant in participants with higher protein intakes, whereas Clostridiales bacterium DTU089 and Desulfovibrio were more abundant in participants with lower protein intake (Bonferroni corrected P < 0.05). CONCLUSIONS We observed significant associations between protein intake and gut microbiome diversity in community-living older men. Further studies are needed to elucidate the mediation role of the gut microbiome on the relation between protein intake and health outcomes in older adults.
Collapse
Affiliation(s)
- Samaneh Farsijani
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Claude D. Pepper Older Americans Independence Center (OAICs), University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shyamal D Peddada
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lisa Langsetmo
- Center for Care Delivery and Outcomes Research, VA Health Care System, Minneapolis, MN, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric S Orwoll
- Division of Endocrinology, Diabetes and Clinical Nutrition, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kristine E Ensrud
- Center for Care Delivery and Outcomes Research, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine and Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peggy M Cawthon
- California Pacific Medical Center Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Claude D. Pepper Older Americans Independence Center (OAICs), University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Sex-specific gut microbiome profiles among preterm infants during the neonatal intensive care hospitalization. INTERDISCIPLINARY NURSING RESEARCH 2022; 1:6-13. [PMID: 36590867 PMCID: PMC9766955 DOI: 10.1097/nr9.0000000000000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
Objectives The gut microbiota among preterm infants is shaped by sex and feeding types. However, sex-specific weekly patterns of gut microbiome profiles among preterm infants during their neonatal intensive care unit (NICU) hospitalization remain unclear. This study aimed to investigate the effect of sex on the weekly development of preterm neonatal gut microbiota in the first 4 weeks of NICU hospitalization. Methods This secondary data analysis included 28 preterm neonates with 261 stool samples collected from January 2014 to February 2015 in the Northeastern United States. The 16S rRNA V4 gene regions of the stool samples were sequenced and aligned against the SILVA 132 database by using Mothur 1.42.3. The sex-specific weekly diversity indexes and relative abundance of bacterial taxonomic composition were generated by Mothur and analyzed by R packages. Sex-specific weekly compositional patterns of the gut microbiome and predicted metabolic functions of gut microbiome profiles were compared, respectively. Results In each week of the NICU hospitalization, preterm females and males had significantly distinguished β-diversity indices and compositions of gut microbiota. Both females and males had significantly enriched Bifidobacterium, a protection feature, in stool samples collected in the third week compared with those in the second week. The predicted metabolic pathways were significantly different between females and males in the second, third, and fourth week of the NICU hospitalization. Both females and males had significantly abundant pathways. Males consistently had more abundance of "lipopolysaccharide biosynthesis" than females in the second, third, and fourth week. Males also had a significant abundance of "membrane and intracellular structural molecules" and "glycan biosynthesis and metabolism" in the second and third week. Conclusions Sex shaped the weekly patterns of preterm neonatal gut microbiome profiles during the first 4 weeks of the NICU hospitalization. Further clinical interventions should consider the distinct gut microbiota compositions and predicted functional profiles between female and male preterm neonates.
Collapse
|
7
|
See JRC, Amos D, Wright J, Lamendella R, Santanam N. Synergistic effects of exercise and catalase overexpression on gut microbiome. Environ Microbiol 2022; 24:4220-4235. [PMID: 34270161 PMCID: PMC8761204 DOI: 10.1111/1462-2920.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Exercise influences metabolic parameters in part by modulating redox stress and as recently suggested, by affecting the gut microbiome. However, whether excess endogenous antioxidant potentiates or interferes with the beneficial effects of exercise on the gut microbiome is not known. A comparison of the gut microbiome of C57Bl6 (C57/WT) mice to the 'stress-less' catalase overexpressing mice models ([Tg(CAT)± ] and Bob-Cat), that were either exercised or remained sedentary, showed differences in both alpha and beta diversity. The significant variation was explained by genotypes along with exercise, suggesting a synergistic relationship between exercise and genotypic traits. Linear discriminant analysis effect size (LEfSe) analysis also revealed differential taxa within the exercised/genotype cohorts in contrast to those within sedentary/genotype cohorts. Functional pathway predictions from PICRUSt2 showed enrichment for the metabolism of short-chain fatty acids, butanoate and propanoate pathways in exercised groups. Spearman correlations between enriched taxa and metabolic parameters showed correlations with body or fat weight in some of the cohorts. However, there were significant correlations of differential taxa among all cohorts against parameters that predict energy metabolism, such as respiratory exchange ratio and energy expenditure. Overall, our study showed that there was a synergistic beneficial influence of antioxidant overexpression and exercise on the gut microbiome.
Collapse
Affiliation(s)
| | - Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| | - Justin Wright
- Department of Biological Sciences, Juniata College,
Huntingdon, PA
| | | | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School
of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
8
|
Alcazar M, Escribano J, Ferré N, Closa-Monasterolo R, Selma-Royo M, Feliu A, Castillejo G, Luque V, Closa-Monasterolo R, Escribano J, Luque V, Feliu-Rovira A, Ferré N, Muñoz-Hernando J, Gutiérrez-Marín D, Zaragoza-Jordana M, Gispert-Llauradó M, Rubio-Torrents M, Núñez-Roig M, Alcázar M, Sentís S, Esteve M, Monné-Gelonch R, Basora J, Flores G, Hsu P, Rey-Reñones C, Alegret C, Guillen N, Alegret-Basora C, Ferre R, Arasa F, Alejos A, Diéguez M, Serrano M, Mallafré M, González-Hidalgo R, Braviz L, Resa A, Palacios M, Sabaté A, Simón L, Losilla A, De La Torre S, Rosell L, Adell N, Pérez C, Tudela-Valls C, Caro-Garduño R, Salvadó O, Pedraza A, Conchillo J, Morillo S, Garcia S, Mur E, Paixà S, Tolós S, Martín R, Aguado F, Cabedo J, Quezada L, Domingo M, Ortega M, Garcia R, Romero O, Pérez M, Fernández M, Villalobos M, Ricomà G, Capell E, Bosch M, Donado A, Sanchis F, Boix A, Goñi X, Castilla E, Pinedo M, Supersaxco L, Ferré M, Contreras J, Sanz-Manrique N, Lara A, Rodríguez M, Pineda T, Segura S, Vidal S, Salvat M, Mimbrero G, Albareda A, Guardia J, Gil S, Lopez M, Ruiz-Escusol S, Gallardo S, Machado P, Bocanegra R, Espejo T, Vendrell M, Solé C, Urbano R, et alAlcazar M, Escribano J, Ferré N, Closa-Monasterolo R, Selma-Royo M, Feliu A, Castillejo G, Luque V, Closa-Monasterolo R, Escribano J, Luque V, Feliu-Rovira A, Ferré N, Muñoz-Hernando J, Gutiérrez-Marín D, Zaragoza-Jordana M, Gispert-Llauradó M, Rubio-Torrents M, Núñez-Roig M, Alcázar M, Sentís S, Esteve M, Monné-Gelonch R, Basora J, Flores G, Hsu P, Rey-Reñones C, Alegret C, Guillen N, Alegret-Basora C, Ferre R, Arasa F, Alejos A, Diéguez M, Serrano M, Mallafré M, González-Hidalgo R, Braviz L, Resa A, Palacios M, Sabaté A, Simón L, Losilla A, De La Torre S, Rosell L, Adell N, Pérez C, Tudela-Valls C, Caro-Garduño R, Salvadó O, Pedraza A, Conchillo J, Morillo S, Garcia S, Mur E, Paixà S, Tolós S, Martín R, Aguado F, Cabedo J, Quezada L, Domingo M, Ortega M, Garcia R, Romero O, Pérez M, Fernández M, Villalobos M, Ricomà G, Capell E, Bosch M, Donado A, Sanchis F, Boix A, Goñi X, Castilla E, Pinedo M, Supersaxco L, Ferré M, Contreras J, Sanz-Manrique N, Lara A, Rodríguez M, Pineda T, Segura S, Vidal S, Salvat M, Mimbrero G, Albareda A, Guardia J, Gil S, Lopez M, Ruiz-Escusol S, Gallardo S, Machado P, Bocanegra R, Espejo T, Vendrell M, Solé C, Urbano R, Vázquez M, Fernández-Antuña L, Barrio M, Baudoin A, González N, Olivé R, Lara R, Dinu C, Vidal C, González S, Ruiz-Morcillo E, Ainsa M, Vilalta P, Aranda B, Boada A, Balcells E. Gut microbiota is associated with metabolic health in children with obesity. Clin Nutr 2022; 41:1680-1688. [DOI: 10.1016/j.clnu.2022.06.007] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
|
9
|
Tang J, Wu X, Mou M, Wang C, Wang L, Li F, Guo M, Yin J, Xie W, Wang X, Wang Y, Ding Y, Xue W, Zhu F. GIMICA: host genetic and immune factors shaping human microbiota. Nucleic Acids Res 2021; 49:D715-D722. [PMID: 33045729 PMCID: PMC7779047 DOI: 10.1093/nar/gkaa851] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
Besides the environmental factors having tremendous impacts on the composition of microbial community, the host factors have recently gained extensive attentions on their roles in shaping human microbiota. There are two major types of host factors: host genetic factors (HGFs) and host immune factors (HIFs). These factors of each type are essential for defining the chemical and physical landscapes inhabited by microbiota, and the collective consideration of both types have great implication to serve comprehensive health management. However, no database was available to provide the comprehensive factors of both types. Herein, a database entitled 'Host Genetic and Immune Factors Shaping Human Microbiota (GIMICA)' was constructed. Based on the 4257 microbes confirmed to inhabit nine sites of human body, 2851 HGFs (1368 single nucleotide polymorphisms (SNPs), 186 copy number variations (CNVs), and 1297 non-coding ribonucleic acids (RNAs)) modulating the expression of 370 microbes were collected, and 549 HIFs (126 lymphocytes and phagocytes, 387 immune proteins, and 36 immune pathways) regulating the abundance of 455 microbes were also provided. All in all, GIMICA enabled the collective consideration not only between different types of host factor but also between the host and environmental ones, which is freely accessible without login requirement at: https://idrblab.org/gimica/.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xianglu Wu
- Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuan Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lidan Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Maiyuan Guo
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqin Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population. Nutrients 2020; 12:nu12102938. [PMID: 32992776 PMCID: PMC7600083 DOI: 10.3390/nu12102938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.
Collapse
|
11
|
Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L, Abadia-Molina F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020; 12:605. [PMID: 32110880 PMCID: PMC7146472 DOI: 10.3390/nu12030605] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
The importance of gut microbiota in health and disease is being highlighted by numerous research groups worldwide. Atherosclerosis, the leading cause of heart disease and stroke, is responsible for about 50% of all cardiovascular deaths. Recently, gut dysbiosis has been identified as a remarkable factor to be considered in the pathogenesis of cardiovascular diseases (CVDs). In this review, we briefly discuss how external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension. We will also be examining the microbiota as a therapeutic target in the prevention of CVDs and the beneficial mechanisms of probiotic administration related to cardiovascular risks. All these new insights might lead to novel analysis and CVD therapeutics based on the microbiota.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alejandro Egea-Zorrilla
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise and Sports (NEXS), Section of Integrative Physiology, University of Copenhagen, Nørre Allé 51, DK-2200 Copenhagen, Denmark;
| | - Sergio Muñoz-Quezada
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile;
- National Agency for Medicines (ANAMED), Public Health Institute, Santiago 7780050, Chile
| | | | - Francisco Abadia-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
12
|
de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, McDonald D, Huang S, Swafford AD, Knight R, Thackray VG. Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. mSystems 2019; 4:e00261-19. [PMID: 31098397 PMCID: PMC6517691 DOI: 10.1128/msystems.00261-19] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022] Open
Abstract
Gut microbial diversity changes throughout the human life span and is known to be associated with host sex. We investigated the association of age, sex, and gut bacterial alpha diversity in three large cohorts of adults from four geographical regions: subjects from the United States and United Kingdom in the American Gut Project (AGP) citizen-science initiative and two independent cohorts of Colombians and Chinese. In three of the four cohorts, we observed a strong positive association between age and alpha diversity in young adults that plateaued after age 40 years. We also found sex-dependent differences that were more pronounced in younger adults than in middle-aged adults, with women having higher alpha diversity than men. In contrast to the other three cohorts, no association of alpha diversity with age or sex was observed in the Chinese cohort. The association of alpha diversity with age and sex remained after adjusting for cardiometabolic parameters in the Colombian cohort and antibiotic usage in the AGP cohort. We further attempted to predict the microbiota age in individuals using a machine-learning approach for the men and women in each cohort. Consistent with our alpha-diversity-based findings, U.S. and U.K. women had a significantly higher predicted microbiota age than men, with a reduced difference being seen above age 40 years. This difference was not observed in the Colombian cohort and was observed only in middle-aged Chinese adults. Together, our results provide new insights into the influence of age and sex on the biodiversity of the human gut microbiota during adulthood while highlighting similarities and differences across diverse cohorts. IMPORTANCE Microorganisms in the human gut play a role in health and disease, and in adults higher gut biodiversity has been linked to better health. Since gut microorganisms may be pivotal in the development of microbial therapies, understanding the factors that shape gut biodiversity is of utmost interest. We performed large-scale analyses of the relationship of age and sex to gut bacterial diversity in adult cohorts from four geographic regions: the United States, the United Kingdom, Colombia, and China. In the U.S., U.K., and Colombian cohorts, bacterial biodiversity correlated positively with age in young adults but plateaued at about age 40 years, with no positive association being found in middle-aged adults. Young, but not middle-aged, adult women had higher gut bacterial diversity than men, a pattern confirmed via supervised machine learning. Interestingly, in the Chinese cohort, minimal associations were observed between gut biodiversity and age or sex. Our results highlight the patterns of adult gut biodiversity and provide a framework for future research.
Collapse
Affiliation(s)
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Yingfeng Chen
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Juan S. Escobar
- Vidarium—Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Epidemiology, Prevention and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Shi Huang
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Varykina G. Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|