1
|
Chen YC, Su YY, Chu TY, Wu MF, Huang CC, Lin CC. PreLect: Prevalence leveraged consistent feature selection decodes microbial signatures across cohorts. NPJ Biofilms Microbiomes 2025; 11:3. [PMID: 39753565 PMCID: PMC11698977 DOI: 10.1038/s41522-024-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/29/2024] [Indexed: 01/06/2025] Open
Abstract
The intricate nature of microbiota sequencing data-high dimensionality and sparsity-presents a challenge in identifying informative and reproducible microbial features for both research and clinical applications. Addressing this, we introduce PreLect, an innovative feature selection framework that harnesses microbes' prevalence to facilitate consistent selection in sparse microbiota data. Upon rigorous benchmarking against established feature selection methodologies across 42 microbiome datasets, PreLect demonstrated superior classification capabilities compared to statistical methods and outperformed machine learning-based methods by selecting features with greater prevalence and abundance. A significant strength of PreLect lies in its ability to reliably identify reproducible microbial features across varied cohorts. Applied to colorectal cancer, PreLect identifies key microbes and highlights crucial pathways, such as lipopolysaccharide and glycerophospholipid biosynthesis, in cancer progression. This case study exemplifies PreLect's utility in discerning clinically relevant microbial signatures. In summary, PreLect's accuracy and robustness make it a significant advancement in the analysis of complex microbiota data.
Collapse
Grants
- NSTC 112-2221-E-A49 -106 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 109-2221-E-010 -014 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 109-2221-E-010 -014 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2221-E-A49 -106 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 109-2221-E-010 -014 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 109-2221-E-010 -014 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 109-2221-E-010 -014 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOHW112-TDU-B-222-124013 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- MOHW111-TDU-B-221-114007 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- MOHW112-TDU-B-222-124013 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- MOHW111-TDU-B-221-114007 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
Collapse
Affiliation(s)
- Yin-Cheng Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Yu Chu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Fong Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chieh-Chun Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Slater R, Tharmaratnam K, Belnour S, Auth MKH, Muhammed R, Spray C, Wang D, de Lacy Costello B, García-Fiñana M, Allen S, Probert C. Gas Chromatography-Sensor System Aids Diagnosis of Inflammatory Bowel Disease, and Separates Crohn's from Ulcerative Colitis, in Children. SENSORS (BASEL, SWITZERLAND) 2024; 24:5079. [PMID: 39124126 PMCID: PMC11314755 DOI: 10.3390/s24155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The diagnosis of inflammatory bowel disease (IBD) in children and the need to distinguish between subtypes (Crohn's disease (CD) and ulcerative colitis (UC)) requires lengthy investigative and invasive procedures. Non-invasive, rapid, and cost-effective tests to support these diagnoses are needed. Faecal volatile organic compounds (VOCs) are distinctive in IBD. VOC profiles can be rapidly determined using a gas chromatography-sensor device (OdoReader©). In an inception-cohort of children presenting with suspected IBD, we directly compared the diagnostic fidelity of faecal calprotectin (FCP, a non-specific protein marker of intestinal inflammation) with OdoReader© VOC profiles of children subsequently diagnosed with IBD with matched controls diagnosed with other gastrointestinal conditions. The OdoReader© was 82% (95% confidence interval 75-89%) sensitive and 71% (61-80%) specific but did not outperform FCP (sensitivity 93% (77-99%) and specificity 86% (67-96%); 250 µg/g FCP cut off) in the diagnosis of IBD from other gastrointestinal conditions when validated in a separate sample from the same cohort. However, unlike FCP and better than other similar technologies, the OdoReader© could distinguish paediatric CD from UC (up to 88% (82-93%) sensitivity and 80% (71-89%) specificity in the validation set) and justifies further validation in larger studies. A non-invasive test based on VOCs could help streamline and limit invasive investigations in children.
Collapse
Affiliation(s)
- Rachael Slater
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK; (K.T.); (M.G.-F.)
| | - Salma Belnour
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Marcus Karl-Heinz Auth
- Paediatric Gastroenterology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (M.K.-H.A.); (S.A.)
| | - Rafeeq Muhammed
- Gastroenterology and Nutrition, Birmingham Children’s NHS Foundation Trust, Birmingham B4 6NH, UK;
| | - Christine Spray
- Paediatric Gastroenterology, Bristol Children’s NHS Foundation Trust, Bristol BS2 8BJ, UK;
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Ben de Lacy Costello
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Marta García-Fiñana
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK; (K.T.); (M.G.-F.)
| | - Stephen Allen
- Paediatric Gastroenterology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (M.K.-H.A.); (S.A.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Chris Probert
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| |
Collapse
|
3
|
Belnour S, Slater R, Tharmaratnam K, Karl‐Heinz Auth M, Muhammed R, Spray C, Wang D, Zeeshan Ijaz U, Probert C, Allen S. Faecal volatile organic compounds differ according to inflammatory bowel disease sub-type, severity, and response to treatment in paediatric patients. United European Gastroenterol J 2024; 12:780-792. [PMID: 38922802 PMCID: PMC11249809 DOI: 10.1002/ueg2.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Faecal volatile organic compounds (VOCs) differ with disease sub-type and activity in adults with established inflammatory bowel disease (IBD) taking therapy. OBJECTIVE To describe patterns of faecal VOCs in children newly presented with IBD according to disease sub-type, severity, and response to treatment. METHODS Children presenting with suspected IBD were recruited from three UK hospitals. Children in whom IBD was diagnosed were matched with a non-IBD child for age, sex, and recruitment site. Faecal VOCs were characterised by gas chromatography-mass spectrometry at presentation and 3 months later in children with IBD. RESULTS In 132 case/control pairs, median (inter-quartile range) age in IBD was 13.3 years (10.2-14.7) and 38.6% were female. Compared with controls, the mean abundance of 27/62 (43.6%) faecal VOCs was statistically significantly decreased in Crohn's disease (CD), ulcerative colitis (UC) or both especially amongst ketones/diketones, fatty acids, and alcohols (p < 0.05). Short-chain, medium chain, and branched chain fatty acids were markedly reduced in severe colitis (p < 0.05). Despite clinical improvement in many children with IBD, the number and abundance of almost all VOCs did not increase following treatment, suggesting persistent dysbiosis. Oct-1-en-3-ol was increased in CD (p = 0.001) and UC (p = 0.012) compared with controls and decreased following treatment in UC (p = 0.01). In CD, propan-1-ol was significantly greater than controls (p < 0.001) and extensive colitis (p = 0.001) and fell with treatment (p = 0.05). Phenol was significantly greater in CD (p < 0.001) and fell with treatment in both CD (p = 0.02) and UC (p = 0.01). CONCLUSION Characterisation of faecal VOCs in an inception cohort of children with IBD reveals patterns associated with diagnosis, disease activity, and extent. Further work should investigate the relationship between VOCs and the microbiome in IBD and their role in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Salma Belnour
- Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Slater
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | | | | | - Rafeeq Muhammed
- Gastroenterology and NutritionBirmingham Children's HospitalBirminghamUK
| | - Christine Spray
- Paediatric GastroenterologyBristol Royal Hospital for ChildrenBristolUK
| | - Duolao Wang
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Chris Probert
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | - Stephen Allen
- Paediatric GastroenterologyAlder Hey Children's NHS Foundation TrustLiverpoolUK
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
4
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Lai S, Yan Y, Pu Y, Lin S, Qiu JG, Jiang BH, Keller MI, Wang M, Bork P, Chen WH, Zheng Y, Zhao XM. Enterotypes of the human gut mycobiome. MICROBIOME 2023; 11:179. [PMID: 37563687 PMCID: PMC10416509 DOI: 10.1186/s40168-023-01586-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.
Collapse
Affiliation(s)
- Senying Lai
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Yan
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yanni Pu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuchun Lin
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jian-Ge Qiu
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Marisa Isabell Keller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Mingyu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- International Human Phenome Institutes (Shanghai), Shanghai, China.
| |
Collapse
|
6
|
Krawczyk A, Salamon D, Kowalska-Duplaga K, Zapała B, Książek T, Drażniuk-Warchoł M, Gosiewski T. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn's disease. World J Gastroenterol 2023; 29:2172-2187. [PMID: 37122605 PMCID: PMC10130967 DOI: 10.3748/wjg.v29.i14.2172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Numerous studies have shown that in Crohn’s disease (CD), the gut microbiota is of great importance in the induction and maintenance of inflammation in the gastrointestinal tract. Until recently, studies have focused almost exclusively on bacteria in the gut. Lately, more attention has been paid to the role of intestinal fungi.
AIM To study the gut mycobiome analysis of pediatric patients with CD (in different stages of disease activity) compared to healthy children.
METHODS Fecal samples were collected from patients: With active, newly diagnosed CD (n = 50); active but previously diagnosed and treated CD (n = 16); non-active CD and who were in clinical remission (n = 39) and from healthy volunteers (n = 40). Fungal DNA was isolated from the samples. Next, next generation sequencing (MiSeq, Illumina) was performed. The composition of mycobiota was correlated with clinical and blood parameters.
RESULTS Candida spp. were overrepresented in CD patients, while in the control group, the most abundant genus was Saccharomyces. In CD patients, the percentage of Malassezia was almost twice that of the control (P < 0.05). In active CD patients, we documented a higher abundance of Debaryomyces hansenii (D. hansenii) compared to the non-active CD and control (P < 0.05) groups. Moreover, statistically significant changes in the abundance of Mycosphaerella, Rhodotorula, and Microidium were observed. The analyses at the species level and linear discriminant analysis showed that in each group it was possible to distinguish a specific species characteristic of a given patient population. Moreover, we have documented statistically significant correlations between: D. hansenii and patient age (negative); C. zeylanoides and patient age (positive); C. dubliniensis and calprotectin (positive); C. sake and calprotectin (positive); and C. tropicalis and pediatric CD activity index (PCDAI) (positive).
CONCLUSION Mycobiome changes in CD patients, and the positive correlation of some species with calprotectin or PCDAI, give strong evidence that fungi may be of key importance in the development of CD.
Collapse
Affiliation(s)
- Agnieszka Krawczyk
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Dominika Salamon
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Kinga Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Cracow 31-066, Poland
| | - Teofila Książek
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Marta Drażniuk-Warchoł
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, Cracow 30-663, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| |
Collapse
|
7
|
Turunen J, Paalanne N, Reunanen J, Tapiainen T, Tejesvi MV. Development of gut mycobiome in infants and young children: a prospective cohort study. Pediatr Res 2023:10.1038/s41390-023-02471-y. [PMID: 36670159 PMCID: PMC10382308 DOI: 10.1038/s41390-023-02471-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND The composition of the gut fungal microbiome, mycobiome, is likely associated with human health. Yet, the development of gut mycobiome is poorly understood in infants and children. Here we investigate how perinatal events influence the development of gut mycobiome. METHODS In this prospective cohort study of 140 infants, we used ITS gene sequencing of fecal samples from birth to the age of 18 months. We compared gut mycobiome composition according to delivery mode and exposure to intrapartum antibiotics during vaginal delivery. RESULTS At birth, gut mycobiome were dominated by the genus Candida, at 6-month stool samples by Malassezia and Cystofilobasidium, and the 18-month stool samples by Trichosporon and unidentified fungi. Perinatal factors altered mycobiome. At 18 months, gut mycobiome of infants born vaginally consisted mostly of Trichosporon (32%) and unidentified fungi (31%), while those born via Cesarean section delivery samples had mycobiome dominated by Saccharomyces (50%). At the age of 18 months, those exposed to intrapartum antibiotics had mycobiome dominated by Trichosporon (66%) not seen in those unexposed to antibiotics. CONCLUSIONS Delivery mode and exposure to intrapartum antibiotic prophylaxis were markedly associated with gut mycobiome composition from birth to 18 months of age. IMPACT The composition of the gut mycobiome is likely associated with human health. Yet, the development of gut mycobiome is poorly understood in infants and children. In this prospective cohort study, delivery mode and exposure to intrapartum antibiotic prophylaxis were markedly associated with gut mycobiome composition from birth to 18 months of age. The impact of intrapartum antibiotic prophylaxis on fungal microbiome in vaginally born infants, previously shown to influence gut bacteriome composition, may be explained by the interaction between bacteria and fungi. Gut mycobiome composition likely deserves further investigation in relation to gut microbiome and health in children.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Yu S, Ge X, Xu H, Tan B, Tian B, Shi Y, Dai Y, Li Y, Hu S, Qian J. Gut microbiome and mycobiome in inflammatory bowel disease patients with Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1129043. [PMID: 36814443 PMCID: PMC9940757 DOI: 10.3389/fcimb.2023.1129043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background Clostridium difficile infection (CDI) is common in patients with inflammatory bowel disease (IBD) and has been reported as a risk factor for poor outcome. However, gut microbiome and mycobiome of IBD patients with CDI have been barely investigated. This study aimed to assess the gut microbiome and mycobiome in IBD patients with CDI. Methods We collected fecal samples from patients with active IBD and concomitant CDI (IBD-CDI group, n=25), patients with active IBD and no CDI (IBD-only group, n=51), and healthy subjects (HC, n=40). Patients' characteristics including demographic data, disease severity, and medication history were collected. Metagenomic sequencing, taxonomic and functional analysis were carried out in the samples. Results We found that the bacterial alpha diversity of the IBD-CDI group was decreased. The bacterial and fungal beta diversity variations between IBD patients and HC were significant, regardless of CDI status. But the IBD-CDI group did not significantly cluster separately from the IBD-only group. Several bacterial taxa, including Enterococcus faecium, Ruminococcus gnavus, and Clostridium innocuum were overrepresented in the IBD-CDI group. Furthermore, IBD patients with CDI were distinguished by several fungal taxa, including overrepresentation of Saccharomyces cerevisiae. We also identified functional differences in IBD patients with CDI include enrichment of peptidoglycan biosynthesis. The network analysis indicated specific interactions between microbial markers in IBD-CDI patients. Conclusion IBD patients with CDI had pronounced microbial dysbiosis. Gut micro-ecological changes in IBD patients with CDI might provide insight into the pathological process and potential strategies for diagnosis and treatment in this subset of patients.
Collapse
Affiliation(s)
- Si Yu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaomeng Ge
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Xu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bowen Tian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yujie Shi
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yimin Dai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Yue Li, ; Songnian Hu,
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yue Li, ; Songnian Hu,
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Hu Q, Liu B, Fan Y, Zheng Y, Wen F, Yu U, Wang W. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia. Front Cell Infect Microbiol 2022; 12:1011254. [PMID: 36389138 PMCID: PMC9651038 DOI: 10.3389/fcimb.2022.1011254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Children are at high risk for influenza A virus (IAV) infections, which can develop into severe illnesses. However, little is known about interactions between the microbiome and respiratory tract metabolites and their impact on the development of IAV pneumonia in children. Using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene sequencing, we analyzed the composition and metabolic profile of the oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and 42 age-matched healthy children. The results indicate that compared to healthy children, children with IAV pneumonia exhibited significant changes in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower microbial abundance and diversity (p < 0.05). These changes came with significant disturbances in the levels of oropharyngeal metabolites. Intergroup differences were observed in 204 metabolites mapped to 36 metabolic pathways. Significantly higher levels of sphingolipid (sphinganine and phytosphingosine) and propanoate (propionic acid and succinic acid) metabolism were observed in patients with IAV pneumonia than in healthy controls. Using Spearman’s rank-correlation analysis, correlations between IAV pneumonia-associated discriminatory microbial genera and metabolites were evaluated. The results indicate significant correlations and consistency in variation trends between Streptococcus and three sphingolipid metabolites (phytosphingosine, sphinganine, and sphingosine). Besides these three sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint analysis of the three metabolites indicated remarkable diagnostic efficacy in children with IAV pneumonia. This study confirmed significant changes in the characteristics and metabolic profile of the oropharyngeal microbiome in pediatric patients with IAV pneumonia, with high synergy between the two factors. Oropharyngeal sphingolipid metabolites may serve as potential diagnostic biomarkers of IAV pneumonia in children.
Collapse
Affiliation(s)
- Qian Hu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Baiming Liu
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yanqun Fan
- Department of Trans-omics Research, Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Uet Yu,
| |
Collapse
|
10
|
Trego A, Keating C, Nzeteu C, Graham A, O’Flaherty V, Ijaz UZ. Beyond Basic Diversity Estimates-Analytical Tools for Mechanistic Interpretations of Amplicon Sequencing Data. Microorganisms 2022; 10:1961. [PMID: 36296237 PMCID: PMC9609705 DOI: 10.3390/microorganisms10101961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding microbial ecology through amplifying short read regions, typically 16S rRNA for prokaryotic species or 18S rRNA for eukaryotic species, remains a popular, economical choice. These methods provide relative abundances of key microbial taxa, which, depending on the experimental design, can be used to infer mechanistic ecological underpinnings. In this review, we discuss recent advancements in in situ analytical tools that have the power to elucidate ecological phenomena, unveil the metabolic potential of microbial communities, identify complex multidimensional interactions between species, and compare stability and complexity under different conditions. Additionally, we highlight methods that incorporate various modalities and additional information, which in combination with abundance data, can help us understand how microbial communities respond to change in a typical ecosystem. Whilst the field of microbial informatics continues to progress substantially, our emphasis is on popular methods that are applicable to a broad range of study designs. The application of these methods can increase our mechanistic understanding of the ongoing dynamics of complex microbial communities.
Collapse
Affiliation(s)
- Anna Trego
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and the Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Ciara Keating
- Institute of Biodiversity, Animal Health & Comparative Medicine, The University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK
| | - Corine Nzeteu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and the Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Alison Graham
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and the Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and the Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Umer Zeeshan Ijaz
- Water Engineering Group, School of Engineering, The University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK
| |
Collapse
|
11
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
12
|
Wiesmann C, Lehr K, Kupcinskas J, Vilchez-Vargas R, Link A. Primers matter: Influence of the primer selection on human fungal detection using high throughput sequencing. Gut Microbes 2022; 14:2110638. [PMID: 35993401 PMCID: PMC9415448 DOI: 10.1080/19490976.2022.2110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbiota research has received an increasing attention for its role in disease development and fungi are considered as one of the key players in the microbial niche. Various sequencing approaches have been applied to uncover the role of fungal community in health and disease; however, little is known on the performance of various primers and comparability between the studies. Motivated by the recent publications, we performed a systematic comparison of the 18S and ITS regions to identify the impact of various primers on the sequencing results. Using four pairs of primers extensively used in literature, fungal community was retrieve from 25 fecal samples, and applying high throughput sequencing; and the results were compared in order to select the most suitable primers for fungal detection in human fecal samples. Considering the high variability between samples, primers described in the Earth microbiome project detected the broadest fungal spectrum suggesting its superior performance in mycobiome research.
Collapse
Affiliation(s)
- Crispin Wiesmann
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania,Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,CONTACT Alexander Link Department of Gastroenterology, Hepatology and Infectious Diseases Otto-von-Guericke University Magdeburg, Leipziger Straße 44 39120Magdeburg, Germany
| |
Collapse
|
13
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest 2022; 132:155786. [PMID: 35229726 PMCID: PMC8884899 DOI: 10.1172/jci155786] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is at the center of inflammatory bowel disease (IBD) pathogenesis and disease activity. While this has mainly been studied in the context of the bacterial microbiome, recent advances have provided tools for the study of host genetics and metagenomics of host-fungal interaction. Through these tools, strong evidence has emerged linking certain fungal taxa, such as Candida and Malassezia, with cellular and molecular pathways of IBD disease biology. Mouse models and human fecal microbial transplant also suggest that some disease-participatory bacteria and fungi may act not via the host directly, but via their fungal-bacterial ecologic interactions. We hope that these insights, and the study design and multi-omics strategies used to develop them, will facilitate the inclusion of the fungal community in basic and translational IBD research.
Collapse
Affiliation(s)
- David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute.,Division of Gastroenterology, Department of Medicine, and.,Research Division of Immunology, Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
15
|
De Pablo-Fernandez E, Gebeyehu GG, Flain L, Slater R, Frau A, Ijaz UZ, Warner T, Probert C. The faecal metabolome and mycobiome in Parkinson's disease. Parkinsonism Relat Disord 2022; 95:65-69. [PMID: 35045378 DOI: 10.1016/j.parkreldis.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gut fungal composition and its metabolites have not been assessed simultaneously in Parkinson's disease (PD) despite their potential pathogenic contribution. OBJECTIVE To evaluate the faecal metabolome and mycobiome in PD by assessing volatile organic compounds (VOCs) and fungal rRNA. METHODS Faecal VOCs from 35 PD patients and two control groups (n = 35; n = 15) were assessed using gas chromatography and mass spectrometry. DNA was extracted from 44 samples: 18S rRNA gene amplicons were prepared and sequenced. Metabolomics, mycobiome and integrated analyses were performed. RESULTS Several VOCs were more abundant and short chain fatty acids were less abundant in PD. Hanseniaspora, Kazachstania, uncultured Tremellaceae and Penicillium genera were more abundant, and Saccharomyces less abundant in PD (FDR<0.0007). Torulaspora was associated with PD and two VOCs. CONCLUSION PD patients had a distinct metabolome and mycobiome suggesting that fungal dysbiosis may contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Eduardo De Pablo-Fernandez
- Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, WC1N 1PJ, London, United Kingdom.
| | - Gerum Gashaw Gebeyehu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown Street, L69 3GE, Liverpool, United Kingdom.
| | - Luke Flain
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown Street, L69 3GE, Liverpool, United Kingdom
| | - Rachael Slater
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown Street, L69 3GE, Liverpool, United Kingdom
| | - Alessandra Frau
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown Street, L69 3GE, Liverpool, United Kingdom
| | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, G12 8QQ, Glasgow, United Kingdom
| | - Thomas Warner
- Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, WC1N 1PJ, London, United Kingdom
| | - Chris Probert
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown Street, L69 3GE, Liverpool, United Kingdom
| |
Collapse
|