1
|
Chandrashekar PB, Chen H, Lee M, Ahmadinejad N, Liu L. DeepCORE: An interpretable multi-view deep neural network model to detect co-operative regulatory elements. Comput Struct Biotechnol J 2024; 23:679-687. [PMID: 38292477 PMCID: PMC10825326 DOI: 10.1016/j.csbj.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gene transcription is an essential process involved in all aspects of cellular functions with significant impact on biological traits and diseases. This process is tightly regulated by multiple elements that co-operate to jointly modulate the transcription levels of target genes. To decipher the complicated regulatory network, we present a novel multi-view attention-based deep neural network that models the relationship between genetic, epigenetic, and transcriptional patterns and identifies co-operative regulatory elements (COREs). We applied this new method, named DeepCORE, to predict transcriptomes in various tissues and cell lines, which outperformed the state-of-the-art algorithms. Furthermore, DeepCORE contains an interpreter that extracts the attention values embedded in the deep neural network, maps the attended regions to putative regulatory elements, and infers COREs based on correlated attentions. The identified COREs are significantly enriched with known promoters and enhancers. Novel regulatory elements discovered by DeepCORE showed epigenetic signatures consistent with the status of histone modification marks.
Collapse
Affiliation(s)
- Pramod Bharadwaj Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53076, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Matthew Lee
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Jefferson W, Wang T, Padilla-Banks E, Williams C. Unexpected nuclear hormone receptor and chromatin dynamics regulate estrous cycle dependent gene expression. Nucleic Acids Res 2024; 52:10897-10917. [PMID: 39166489 PMCID: PMC11472041 DOI: 10.1093/nar/gkae714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Chromatin changes in response to estrogen and progesterone are well established in cultured cells, but how they control gene expression under physiological conditions is largely unknown. To address this question, we examined in vivo estrous cycle dynamics of mouse uterus hormone receptor occupancy, chromatin accessibility and chromatin structure by combining RNA-seq, ATAC-seq, HiC-seq and ChIP-seq. Two estrous cycle stages were chosen for these analyses, diestrus (highest estrogen) and estrus (highest progesterone). Unexpectedly, rather than alternating with each other, estrogen receptor alpha (ERα) and progesterone receptor (PGR) were co-bound during diestrus and lost during estrus. Motif analysis of open chromatin followed by hypoxia inducible factor 2A (HIF2A) ChIP-seq and conditional uterine deletion of this transcription factor revealed a novel role for HIF2A in regulating diestrus gene expression patterns that were independent of either ERα or PGR binding. Proteins in complex with ERα included PGR and cohesin, only during diestrus. Combined with HiC-seq analyses, we demonstrate that complex chromatin architecture changes including enhancer switching are coordinated with ERα and PGR co-binding during diestrus and non-hormone receptor transcription factors such as HIF2A during estrus to regulate most differential gene expression across the estrous cycle.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive & Developmental Biology Laboratory, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Noches V, Campos-Melo D, Droppelmann CA, Strong MJ. Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1417961. [PMID: 39290830 PMCID: PMC11405384 DOI: 10.3389/fnmol.2024.1417961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The progressive degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) is accompanied by the formation of a broad array of cytoplasmic and nuclear neuronal inclusions (protein aggregates) largely containing RNA-binding proteins such as TAR DNA-binding protein 43 (TDP-43) or fused in sarcoma/translocated in liposarcoma (FUS/TLS). This process is driven by a liquid-to-solid phase separation generally from proteins in membrane-less organelles giving rise to pathological biomolecular condensates. The formation of these protein aggregates suggests a fundamental alteration in the mRNA expression or the levels of the proteins involved. Considering the role of the epigenome in gene expression, alterations in DNA methylation, histone modifications, chromatin remodeling, non-coding RNAs, and RNA modifications become highly relevant to understanding how this pathological process takes effect. In this review, we explore the evidence that links epigenetic mechanisms with the formation of protein aggregates in ALS. We propose that a greater understanding of the role of the epigenome and how this inter-relates with the formation of pathological LLPS in ALS will provide an attractive therapeutic target.
Collapse
Affiliation(s)
- Veronica Noches
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Sosorev AY, Parashchuk OD, Chicherin IV, Trubitsyn AA, Trukhanov VA, Baleva MV, Piunova UE, Kharlanov OG, Kamenski P, Paraschuk DY. Probing of nucleic acid compaction using low-frequency Raman spectroscopy. Phys Chem Chem Phys 2024; 26:17467-17475. [PMID: 38864440 DOI: 10.1039/d3cp05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Compaction of nucleic acids, namely DNA and RNA, determines their functions and involvement in vital cell processes including transcription, replication, DNA repair and translation. However, experimental probing of the compaction of nucleic acids is not straightforward. In this study, we suggest an approach for this probing using low-frequency Raman spectroscopy. Specifically, we show theoretically, computationally and experimentally the quantifiable correlation between the low-frequency Raman intensity from nucleic acids, magnitude of thermal fluctuations of atomic positions, and the compaction state of biomolecules. Noteworthily, we highlight that the LF Raman intensity differs by an order of magnitude for different samples of DNA, and even for the same sample in the course of long-term storage. The feasibility of the approach is further shown by assessment of the DNA compaction in the nuclei of plant cells. We anticipate that the suggested approach will enlighten compaction of nucleic acids and their dynamics during the key processes of the cell life cycle and under various factors, facilitating advancement of molecular biology and medicine.
Collapse
Affiliation(s)
- Andrey Yu Sosorev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya 70, Moscow 117393, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Olga D Parashchuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Ivan V Chicherin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Artem A Trubitsyn
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Vasiliy A Trukhanov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Maria V Baleva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Ulyana E Piunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Oleg G Kharlanov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Dmitry Yu Paraschuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| |
Collapse
|
5
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
6
|
Abstract
The human genome is organized into multiple structural layers, ranging from chromosome territories to progressively smaller substructures, such as topologically associating domains (TADs) and chromatin loops. These substructures, collectively referred to as long-range chromatin interactions (LRIs), have a significant role in regulating gene expression. TADs are regions of the genome that harbour groups of genes and regulatory elements that frequently interact with each other and are insulated from other regions, thereby preventing widespread uncontrolled DNA contacts. Chromatin loops formed within TADs through enhancer and promoter interactions are elastic, allowing transcriptional heterogeneity and stochasticity. Over the past decade, it has become evident that the 3D genome structure, also referred to as the chromatin architecture, is central to many transcriptional cellular decisions. In this Review, we delve into the intricate relationship between steroid receptors and LRIs, discussing how steroid receptors interact with and modulate these chromatin interactions. Genetic alterations in the many processes involved in organizing the nuclear architecture are often associated with the development of hormone-dependent cancers. A better understanding of the interplay between architectural proteins and hormone regulatory networks can ultimately be exploited to develop improved approaches for cancer treatment.
Collapse
Affiliation(s)
- Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Phasing the intranuclear organization of steroid hormone receptors. Biochem J 2021; 478:443-461. [DOI: 10.1042/bcj20200883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid–liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.
Collapse
|
8
|
SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells. Int J Mol Sci 2020; 21:ijms21113969. [PMID: 32492816 PMCID: PMC7312701 DOI: 10.3390/ijms21113969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin (SMARC) subfamily B member 1 (SMARCB1) is a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, one of the adenosine triphosphate (ATP)-dependent chromatin remodeler complexes. The unique role of SMARCB1 has been reported in various cellular contexts. Here, we focused on the general role of the ubiquitous expression of SMARCB1 in a normal cell state. We selected ARPE19 (human primary retinal pigment epithelium) and IMR90 (from human fetal lung fibroblasts) cell lines as they have completely different contexts. Furthermore, although these cell lines have been immortalized, they are relatively close to normal human cells. The loss of SMARCB1 in ARPE19 and IMR90 cells reduced cell cycle progression via the upregulation of P21. Transcriptome analysis followed by SMARCB1 knockdown in both cell lines revealed that SMARCB1 was not only involved in cell maintenance but also conferred immunomodulation. Of note, SMARCB1 bound to interleukin (IL) 6 promoter in a steady state and dissociated in an active immune response state, suggesting that SMARCB1 was a direct repressor of IL6, which was further confirmed via loss- and gain-of-function studies. Taken together, we demonstrated that SMARCB1 is a critical gatekeeper molecule of the cell cycle and immune response.
Collapse
|
9
|
Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proc Natl Acad Sci U S A 2019; 117:23280-23285. [PMID: 31399550 DOI: 10.1073/pnas.1820842116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] ≤ 0.1 and absolute fold change [FC] expression ≥ 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn's cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.
Collapse
|
10
|
Hama Y, Katsu M, Takigawa I, Yabe I, Matsushima M, Takahashi I, Katayama T, Utsumi J, Sasaki H. Genomic copy number variation analysis in multiple system atrophy. Mol Brain 2017; 10:54. [PMID: 29187220 PMCID: PMC5708077 DOI: 10.1186/s13041-017-0335-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/08/2017] [Indexed: 01/21/2023] Open
Abstract
Genomic variation includes single-nucleotide variants, small insertions or deletions (indels), and copy number variants (CNVs). CNVs affect gene expression by altering the genome structure and transposable elements within a region. CNVs are greater than 1 kb in size; hence, CNVs can produce more variation than can individual single-nucleotide variations that are detected by next-generation sequencing. Multiple system atrophy (MSA) is an α-synucleinopathy adult-onset disorder. Pathologically, it is characterized by insoluble aggregation of filamentous α-synuclein in brain oligodendrocytes. Generally, MSA is sporadic, although there are rare cases of familial MSA. In addition, the frequencies of the clinical phenotypes differ considerably among countries. Reports indicate that genetic factors play roles in the mechanisms involved in the pathology and onset of MSA. To evaluate the genetic background of this disorder, we attempted to determine whether there are differences in CNVs between patients with MSA and normal control subjects. We found that the number of CNVs on chromosomes 5, 22, and 4 was increased in MSA; 3 CNVs in non-coding regions were considered risk factors for MSA. Our results show that CNVs in non-coding regions influence the expression of genes through transcription-related mechanisms and potentially increase subsequent structural alterations of chromosomes. Therefore, these CNVs likely play roles in the molecular mechanisms underlying MSA.
Collapse
Affiliation(s)
- Yuka Hama
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masataka Katsu
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-0033, Japan
| | - Ichigaku Takigawa
- Graduate School of Information Science and Technology, Hokkaido University, Kita-14 Nisi-9, Kira-ku, Sapporo, 060-0814, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ikuko Takahashi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takayuki Katayama
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, 1-1, Higashi 2-jo 1-chome, Midorigaoka, Asahikawa, 078-8510, Japan
| | - Jun Utsumi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
11
|
Goldstein I, Paakinaho V, Baek S, Sung MH, Hager GL. Synergistic gene expression during the acute phase response is characterized by transcription factor assisted loading. Nat Commun 2017; 8:1849. [PMID: 29185442 PMCID: PMC5707366 DOI: 10.1038/s41467-017-02055-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
The cytokines interleukin 1β and 6 (IL-1β, IL-6) mediate the acute phase response (APR). In liver, they regulate the secretion of acute phase proteins. Using RNA-seq in primary hepatocytes, we show that these cytokines regulate transcription in a bifurcated manner, leading to both synergistic and antagonistic gene expression. By mapping changes in enhancer landscape and transcription factor occupancy (using ChIP-seq), we show that synergistic gene induction is achieved by assisted loading of STAT3 on chromatin by NF-κB. With IL-6 treatment alone, STAT3 does not efficiently bind 20% of its coordinated binding sites. In the presence of IL-1β, NF-κB is activated, binds a subset of enhancers and primes their activity, as evidenced by increasing H3K27ac. This facilitates STAT3 binding and synergistic gene expression. Our findings reveal an enhancer-specific crosstalk whereby NF-κB enables STAT3 binding at some enhancers while perturbing it at others. This model reconciles seemingly contradictory reports of NF-κB-STAT3 crosstalk. The cytokines IL-1β and IL-6 mediate the systemic acute phase response (APR). Here, the authors provide evidence that these cytokines lead to both synergistic and antagonistic gene expression during APR; synergistic induction occurs by assisted loading of STAT3 on chromatin by NF-κB.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, 20892, USA.
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD, 21224, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep 2017; 7:201. [PMID: 28298630 PMCID: PMC5427839 DOI: 10.1038/s41598-017-00143-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (HSP90) inhibition is an attractive strategy for cancer treatment. Several HSP90 inhibitors have shown promising effects in clinical oncology trials. However, little is known about HSP90 inhibition-mediated bladder cancer therapy. Here, we report a quantitative proteomic study that evaluates alterations in protein expression and histone post-translational modifications (PTMs) in bladder carcinoma in response to HSP90 inhibition. We show that 5 HSP90 inhibitors (AUY922, ganetespib, SNX2112, AT13387, and CUDC305) potently inhibited the proliferation of bladder cancer 5637 cells in a dose- and time-dependent manner. Our proteomic study quantified 518 twofold up-regulated and 811 twofold down-regulated proteins common to both AUY922 and ganetespib treatment. Bioinformatic analyses revealed that those differentially expressed proteins were involved in multiple cellular processes and enzyme-regulated signaling pathways, including chromatin modifications and cell death-associated pathways. Furthermore, quantitative proteome studies identified 14 types of PTMs with 93 marks on the core histones, including 34 novel histone marks of butyrylation, citrullination, 2-hydroxyisobutyrylation, methylation, O-GlcNAcylation, propionylation, and succinylation in AUY922- and ganetespib-treated 5637 cells. Together, this study outlines the association between proteomic changes and histone PTMs in response to HSP90 inhibitor treatment in bladder carcinoma cells, and thus intensifies the understanding of HSP90 inhibition-mediated bladder cancer therapeutics.
Collapse
|
13
|
Presman DM, Hager GL. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? Transcription 2016; 8:32-39. [PMID: 27764575 PMCID: PMC5279712 DOI: 10.1080/21541264.2016.1249045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is widely accepted that the glucocorticoid receptor (GR), a ligand-regulated transcription factor that triggers anti-inflammatory responses, binds specific response elements as a homodimer. Here, we will discuss the original primary data that established this model and contrast it with a recent report characterizing the GR-DNA complex as a tetramer.
Collapse
Affiliation(s)
- Diego M Presman
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Gordon L Hager
- a Laboratory of Receptor Biology and Gene Expression , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|