1
|
Soiniemi L, Solje E, Suominen AL, Kanninen KM, Kullaa AM. The association between oral diseases and neurodegenerative disorders. J Alzheimers Dis 2024; 102:577-586. [PMID: 39529279 DOI: 10.1177/13872877241289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between cognitive neurodegenerative disease and oral diseases has been under great interest recently. Several studies have suggested a connection between periodontitis and Alzheimer's disease (AD) or other neurodegenerative disorders. OBJECTIVE This study aimed to review the potential mechanisms between oral diseases and neurodegenerative diseases. METHODS The study was executed as a literature review of English-language publications from 2018-2022. The databases used for the search were PubMed, Cochrane, Scopus, and Web of Science. The search phrases used were "neurodegenerative diseases" AND "oral health" and "neurodegenerative diseases" AND "oral diseases." RESULTS The linkage between the two disease groups was observed in several distinct publications and several potential mechanisms were found. The link between periodontitis and AD proved to be the most significant. The effect was accentuated in elderly people where individuals possessed also other risk factors for neurodegenerative diseases and had generally worse oral health conditions. CONCLUSIONS Oral diseases may be risks for neurodegenerative changes along many different pathways. Good oral health should be acknowledged as a potential preventative or risk-reducing act against neurodegenerative diseases.
Collapse
Affiliation(s)
- Lauriina Soiniemi
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, and Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arja M Kullaa
- Institute of Dentistry, Medical School, University of Eastern Finland, and Oral and Maxillofacial Teaching Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Zhou J, Cheng ZM. Effect of Ultrasonic Cleaning Combined with Antibacterial Polypeptide Periodontal Gel on Inflammatory Reaction and Incidence of Adverse Reactions in Patients with Chronic Gingivitis. Appl Biochem Biotechnol 2024; 196:8809-8819. [PMID: 38954328 DOI: 10.1007/s12010-024-04928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 07/04/2024]
Abstract
The purpose of this investigation was to evaluate the efficacy of ultrasonic subgingival curettage in conjunction with antibacterial polypeptide periodontal gel in the management of chronic periodontitis of moderate to severe severity. Methods included dividing 500 hospitalised patients with moderate to severe chronic periodontitis evenly between an observation group and a control group. Subgingival ultrasonic curettage was performed on the placebo group. The non-treatment group received ultrasonic subgingival curettage and a periodontal gel rinse containing polypeptides. Results were compared before and after treatment in terms of the periodontal index, inflammation in the gingival crevicular fluid, and occlusal and masticatory efficiency. Both groups saw significant reductions in occlusal duration and occlusal force balance after treatment compared to pre-treatment levels, though the observation group saw a more dramatic decrease in these indices than the control group with P ≤ 0.05. The treatment and observation groups both saw significant reductions in the masticatory efficiency standard deviation afterward, but the index in the observation group was significantly lower than that of the control group with P ≤ 0.05.The authors claim that moderate to severe chronic periodontitis can be effectively treated with a combination of polypeptide periodontal gel and ultrasonic subgingival curettage. Substantial decreases from pre-treatment levels for both groups, with the Observation Group's index being significantly lower than the Control Group's index (P ≤ 0.05). It is possible that this treatment will help reduce inflammation and improve your periodontal health. Biting strength and occlusion stability can both be improved at the same time to help patients improve their chewing efficiency. Therefore, this method can be used securely in real-world patient care settings.
Collapse
Affiliation(s)
- Jun Zhou
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, 215000, Suzhou, China.
| | - Zhi Ming Cheng
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, 215000, Suzhou, China
| |
Collapse
|
3
|
Verma A, Azhar G, Patyal P, Zhang W, Zhang X, Wei JY. Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells. GeroScience 2024; 46:4315-4332. [PMID: 38507186 PMCID: PMC11336124 DOI: 10.1007/s11357-024-01117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic periodontitis and its keystone pathogen, Porphyromonas gingivalis, have increasingly been linked with Alzheimer's disease (AD). However, P.gingivalis-lipopolysaccharide (LPS) mediated release of neuroinflammatory proteins contributes to AD remains underexplored. In this study, we utilized data-independent acquisition mass spectrometry to characterize P.gingivalis-LPS induced profile of differentially expressed proteins associated with the neuroinflammatory response in human neuroblastoma (SH-SY5Y) and human microglial (HMC3) cells. We reported a set of 124 proteins in SH-SY5Y cells and 96 proteins in HMC3 cells whose levels were significantly upregulated or downregulated by exposure to P. gingivalis-LPS. Our findings demonstrate that P. gingivalis-LPS contributed to the elevated expressions of dementia biomarkers and pro-inflammatory cytokines that include APP, Aβ1-42, Aβ1-40, T-Tau, p-Tau, VEGF, TGF-β, IL-1β, IL-6 and TNF-α through 2 distinct pathways of extracellular sensing by cell surface receptors and intracellular cytosolic receptors. Interestingly, intracellular signaling proteins activated with P. gingivalis-LPS transfection using Lipofectamine™ 2000 had significantly higher fold change protein expression compared to the extracellular signaling with P. gingivalis-LPS treatment. Additionally, we also explored P. gingivalis-LPS mediated activation of caspase-4 dependent non canonical inflammasome pathway in both SH-SY5Y and HMC3 cells. In summary, P. gingivalis-LPS induced neuroinflammatory protein expression in SH-SY5Y and HMC3 cells, provided insights into the specific inflammatory pathways underlying the potential link between P. gingivalis-LPS infection and the pathogenesis of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Ambika Verma
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Xiaomin Zhang
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
5
|
Issilbayeva A, Kaiyrlykyzy A, Vinogradova E, Jarmukhanov Z, Kozhakhmetov S, Kassenova A, Nurgaziyev M, Mukhanbetzhanov N, Alzhanova D, Zholdasbekova G, Askarova S, Kushugulova AR. Oral Microbiome Stamp in Alzheimer's Disease. Pathogens 2024; 13:195. [PMID: 38535538 PMCID: PMC10975384 DOI: 10.3390/pathogens13030195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
Recent studies have suggested that periodontal disease and alterations in the oral microbiome may be associated with cognitive decline and Alzheimer's disease (AD) development. Here, we report a case-control study of oral microbiota diversity in AD patients compared to healthy seniors from Central Asia. We have characterized the bacterial taxonomic composition of the oral microbiome from AD patients (n = 64) compared to the healthy group (n = 71) using 16S ribosomal RNA sequencing. According to our results, the oral microbiome of AD has a higher microbial diversity, with an increase in Firmicutes and a decrease in Bacteroidetes in the AD group. LEfSe analysis showed specific differences at the genus level in both study groups. A region-based analysis of the oral microbiome compartment in AD was also performed, and specific differences were identified, along with the absence of differences in bacterial richness and on the functional side. Noteworthy findings demonstrated the decrease in periodontitis-associated bacteria in the AD group. Distinct differences were revealed in the distribution of metabolic pathways between the two study groups. Our study confirms that the oral microbiome is altered in AD. However, a comprehensive picture of the complete composition of the oral microbiome in patients with AD requires further investigation.
Collapse
Affiliation(s)
- Argul Issilbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Aiym Kaiyrlykyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Zharkyn Jarmukhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Aliya Kassenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Madiyar Nurgaziyev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Nurislam Mukhanbetzhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Dinara Alzhanova
- Department of Neurology, Medical University Astana, Astana Z05H0P9, Kazakhstan;
| | - Gulnaz Zholdasbekova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
- Medical University Karaganda, Karaganda M01K3B6, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
| | - Almagul R. Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (A.I.); (A.K.); (E.V.); (Z.J.); (S.K.); (A.K.); (M.N.); (N.M.); (G.Z.)
- JSC “National Research Cardiac Surgery Center”, Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Borgnakke WS. Current scientific evidence for why periodontitis should be included in diabetes management. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 4:1257087. [PMID: 38274772 PMCID: PMC10809181 DOI: 10.3389/fcdhc.2023.1257087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
This Perspective provides a brief summary of the scientific evidence for the two-way links between periodontal diseases and hyperglycemia (diabetes mellitus [DM] and pre-DM). It delivers in a nutshell current scientific evidence for manifestations of hyperglycemia on periodontal health status and effects of periodontal diseases on blood glucose levels and in turn incidence, progression, and complications of diabetes. Of outmost importance is presentation of scientific evidence for the potential of routine periodontal treatment to lower blood glucose levels, providing a novel, economical tool in DM management. Non-surgical periodontal treatment ("deep cleaning") can be provided by dental hygienists or dentists in general dental offices, although severe cases should be referred to specialists. Such therapy can decrease the costs of DM care and other health care costs for people with DM. The great importance of a healthy oral cavity free of infection and subsequent inflammation - especially periodontitis that if untreated will cause loosening and eventually loss of affected teeth - has largely gone unnoticed by the medical community as the health care curricula are largely void of content regarding the bi-directional links between oral health and systemic health, despite elevation of blood glucose levels being an integral part of the general systemic inflammation response. The importance of keeping disease-free, natural teeth for proper biting and chewing, smiling, self-esteem, and pain avoidance cannot be overestimated. Medical and dental professionals are strongly encouraged to collaborate in patient-centered care for their mutual patients with - or at risk for - hyperglycemia.
Collapse
Affiliation(s)
- Wenche Sylling Borgnakke
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Bourbour S, Darbandi A, Bostanghadiri N, Ghanavati R, Taheri B, Bahador A. Effects of Antimicrobial Photosensitizers of Photodynamic Therapy (PDT) to Treat Periodontitis. Curr Pharm Biotechnol 2024; 25:1209-1229. [PMID: 37475551 DOI: 10.2174/1389201024666230720104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial photodynamic therapy or aPDT is an alternative therapeutic approach in which lasers and different photosensitizing agents are used to eradicate periodontopathic bacteria in periodontitis. Periodontitis is a localized infectious disease caused by periodontopathic bacteria and can destroy bones and tissues surrounding and supporting the teeth. The aPDT system has been shown by in vitro studies to have high bactericidal efficacy. It was demonstrated that aPDT has low local toxicity, can speed up dental therapy, and is cost-effective. Several photosensitizers (PSs) are available for each type of light source which did not induce any damage to the patient and are safe. In recent years, significant advances have been made in aPDT as a non-invasive treatment method, especially in treating infections and cancers. Besides, aPDT can be perfectly combined with other treatments. Hence, this survey focused on the effectiveness and mechanism of aPDT of periodontitis by using lasers and the most frequently used antimicrobial PSs such as methylene blue (MB), toluidine blue ortho (TBO), indocyanine green (ICG), malachite green (MG) (Triarylmethanes), erythrosine dyes (ERY) (Xanthenes dyes), rose bengal (RB) (Xanthenes dyes), eosin-Y (Xanthenes dyes), radachlorin group and curcumin. The aPDT with these PSs can reduce pathogenic bacterial loads in periodontitis. Therefore, it is clear that there is a bright future for using aPDT to fight microorganisms causing periodontitis.
Collapse
Affiliation(s)
- Samaneh Bourbour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- Department of Microbiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yuan L, Wang Y, Zong Y, Dong F, Zhang L, Wang G, Dong H, Wang Y. Response of genes related to iron and porphyrin transport in Porphyromonas gingivalis to blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112670. [PMID: 36841175 DOI: 10.1016/j.jphotobiol.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.
Collapse
Affiliation(s)
- Lintian Yuan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Zong
- Harvard medical school, Boston, MA02115, USA
| | - Fan Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ludan Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Guiyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Huihua Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuguang Wang
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
9
|
Cheng X, Chi L, Lin T, Liang F, Pei Z, Sun J, Teng W. Exogenous monocyte myeloid-derived suppressor cells ameliorate immune imbalance, neuroinflammation and cognitive impairment in 5xFAD mice infected with Porphyromonas gingivalis. J Neuroinflammation 2023; 20:55. [PMID: 36864466 PMCID: PMC9979576 DOI: 10.1186/s12974-023-02743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Periodontitis is closely associated with the pathogenesis of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), the keystone periodontal pathogen, has been reported in our recent study to cause immune-overreaction and induce cognitive impairment. Monocytic myeloid-derived suppressor cells (mMDSCs) possess potent immunosuppressive function. It is unclear whether mMDSCs-mediated immune homeostasis is impaired in AD patients with periodontitis, and whether exogenous mMDSCs could ameliorate immune-overreaction and cognitive impairment induced by Pg. METHODS To explore the influence of Pg on cognitive function, neuropathology and immune balance in vivo, 5xFAD mice were treated with live Pg by oral gavage, three times a week for 1 month. The cells of peripheral blood, spleen and bone marrow from 5xFAD mice were treated with Pg to detect the proportional and functional alterations of mMDSCs in vitro. Next, exogenous mMDSCs were sorted from wild-type healthy mice and intravenously injected into 5xFAD mice that were infected with Pg. We used behavioral tests, flow cytometry and immunofluorescent staining to evaluate whether exogenous mMDSCs could ameliorate the cognitive function, immune homeostasis and reduce neuropathology exacerbated by Pg infection. RESULTS Pg exacerbated cognitive impairment in 5xFAD mice, with the deposition of amyloid plaque and increased number of microglia in the hippocampus and cortex region. The proportion of mMDSCs decreased in Pg-treated mice. In addition, Pg reduced the proportion and the immunosuppressive function of mMDSCs in vitro. Supplement of exogenous mMDSCs improved the cognitive function, and enhanced the proportions of mMDSCs and IL-10+ T cells of 5xFAD mice infected with Pg. At the same time, supplement of exogenous mMDSCs increased the immunosuppressive function of endogenous mMDSCs while decreased the proportions of IL-6+ T cells and IFN-γ+ CD4+ T cells. In addition, the deposition of amyloid plaque decreased while the number of neurons increased in the hippocampus and cortex region after the supplement of exogenous mMDSCs. Furthermore, the number of microglia increased with an increase in the proportion of M2 phenotype. CONCLUSIONS Pg can reduce the proportion of mMDSCs, induce immune-overreaction, and exacerbate the neuroinflammation and cognitive impairment in 5xFAD mice. Supplement of exogenous mMDSCs can reduce the neuroinflammation, immune imbalance and cognitive impairment in 5xFAD mice infected with Pg. These findings indicate the mechanism of AD pathogenesis and Pg-mediated promotion of AD, and provide a potential therapeutic strategy for AD patients.
Collapse
Affiliation(s)
- Xiao Cheng
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Chi
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Tianqiong Lin
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fengyin Liang
- grid.12981.330000 0001 2360 039XDepartment of Neurology, The First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road2, Guangzhou, 510080 China
| | - Zhong Pei
- grid.12981.330000 0001 2360 039XDepartment of Neurology, The First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road2, Guangzhou, 510080 China
| | - Jianbo Sun
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
P. gingivalis-LPS Induces Mitochondrial Dysfunction Mediated by Neuroinflammation through Oxidative Stress. Int J Mol Sci 2023; 24:ijms24020950. [PMID: 36674463 PMCID: PMC9861869 DOI: 10.3390/ijms24020950] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, is associated with neuroinflammation. Periodontal disease increases with age; 70.1% of adults 65 years and older have periodontal problems. However, the P. gingivalis- lipopolysaccharide (LPS)induced mitochondrial dysfunction in neurodegenerative diseases remains elusive. In this study, we investigated the possible role of P. gingivalis-LPS in mitochondrial dysfunction during neurodegeneration. We found that P. gingivalis-LPS treatment activated toll-like receptor (TLR) 4 signaling and upregulated the expression of Alzheimer's disease-related dementia and neuroinflammatory markers. Furthermore, the LPS treatment significantly exacerbated the production of reactive oxygen species and reduced the mitochondrial membrane potential. Our study highlighted the pivotal role of P. gingivalis-LPS in the repression of serum response factor (SRF) and its co-factor p49/STRAP that regulate the actin cytoskeleton. The LPS treatment repressed the genes involved in mitochondrial function and biogenesis. P. gingivalis-LPS negatively altered oxidative phosphorylation and glycolysis and reduced total adenosine triphosphate (ATP) production. Additionally, it specifically altered the mitochondrial functions in complexes I, II, and IV of the mitochondrial electron transport chain. Thus, it is conceivable that P. gingivalis-LPS causes mitochondrial dysfunction through oxidative stress and inflammatory events in neurodegenerative diseases.
Collapse
|
12
|
Yang L, He L, Bu Z, Xuan C, Yu C, Wu J. Serum Protein-Based Profiles for the Diagnostic Model of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2023; 38:15333175231220166. [PMID: 38041525 PMCID: PMC10693785 DOI: 10.1177/15333175231220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
BACKGROUND Determining a non-invasive, serum-based diagnostic panel for early diagnosis of AD will play a significant role in the prevention and treatment of the disease. METHODS We performed standardized clinical assessments and neuroimaging measurements in 45 patients with AD and an equal number of sex - and age-matched controls. 48 target peptides of 14 identified target proteins were quantitatively analyzed by PRM. RESULTS 8 protein markers were screened, including SAA4, PPBP, PF4, APOA4, F10, CPB2, C1S and IGHM. An diagnosis panel including 8 proteins and demographic characteristics markers respectively was found to be the robust with a AUC of 92.3%. CONCLUSIONS Our study developed a new panel including protein and demographic characteristics that could be used to distinguish AD from control candidates.
Collapse
Affiliation(s)
- Li Yang
- Zhejiang Hospital, Hangzhou, China
| | - Liang He
- Disease Control and Prevention Center of Zhuji, Zhuji, China
| | | | - Cheng Xuan
- Zhuji Second People’s Hospital, Zhuji, China
| | - Caiyan Yu
- Zhuji Second People’s Hospital, Zhuji, China
| | - Jiong Wu
- Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
13
|
Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Sclafani R, Valletta A, Lo Giudice A, Cavalcanti R, Spagnuolo G, Isola G. Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:13708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Raffaele Cavalcanti
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
14
|
Bhalla SP, Shaju AM, Figueredo CMDS, Miranda LA. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens 2022; 11:pathogens11090983. [PMID: 36145415 PMCID: PMC9503606 DOI: 10.3390/pathogens11090983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
C5a is a powerful complement effector molecule that is considered to be an important proinflammatory mediator in several systemic chronic inflammatory diseases. However, its levels in periodontal diseases are yet to be assessed. We aimed to analyse the secretion of C5a in gingival crevicular fluid (GCF) and saliva of patients with periodontal disease. Twenty-eight patients diagnosed with stage 3–4 periodontitis and 16 periodontally healthy subjects participated in this study. GCF was collected from sites with the deepest probing depth of each patient, and volume was measured using a Periotron 8000®. One mL of unstimulated saliva was also collected. Samples were analysed using a commercially available ELISA kit. The data were analysed using the Mann–Whitney U test, Pearson’s bivariate testing, and receiver operating characteristic curve. C5a was present in GCF from patients with periodontitis (1.06 ± 0.25 ng/mL) whilst it was undetected in controls. Saliva concentration was also significantly higher in periodontitis (1.82 ± 2.31 ng/mL) than controls (0.60 ± 0.72 ng/mL, p = 0.006). C5a levels were more pronounced in periodontitis in both oral fluids assessed by the present pilot study. These results suggest that the more pronounced levels of C5a in oral fluids from periodontitis patients indicate a potential role of this molecule in this disease pathogenesis, deserving to be better explored in subsequent studies.
Collapse
Affiliation(s)
| | - Ann Maria Shaju
- Discipline of Periodontics, UWA Dental School, Nedlands, WA 6009, Australia
| | - Carlos Marcelo da Silva Figueredo
- School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Huddinge, Sweden
| | | |
Collapse
|
15
|
Isola G, Polizzi A, Santonocito S, Dalessandri D, Migliorati M, Indelicato F. New Frontiers on Adjuvants Drug Strategies and Treatments in Periodontitis. Sci Pharm 2021; 89:46. [DOI: 10.3390/scipharm89040046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that appear during periodontitis have attracted the attention of researchers in the study of new personalised approaches for the treatment of periodontitis. The gold standard of non-surgical therapy of periodontitis involves the removal of supra and subgingival biofilm through professional scaling and root planing (SRP) and oral hygiene instructions. In order to improve periodontal clinical outcomes and overcome the limitations of traditional SRP, additional adjuvants have been developed in recent decades, including local or systemic antibiotics, antiseptics, probiotics, anti-inflammatory and anti-resorptive drugs and host modulation therapies. This review is aimed to update the current and recent evolution of therapies of management of periodontitis based on the adjunctive and target therapies. Moreover, we discuss the advances in host modulation of periodontitis and the impact of targeting epigenetic mechanisms approaches for a personalised therapeutic success in the management of periodontitis. In conclusion, the future goal in periodontology will be to combine and personalise the periodontal treatments to the colonising microbial profile and to the specific response of the individual patient.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Domenico Dalessandri
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Dental School, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Migliorati
- Department of Orthodontics, School of Dentistry, University of Genova, Largo Rossana Benzi 10, 16132 Genova, Italy
| | - Francesco Indelicato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
16
|
Elwishahy A, Antia K, Bhusari S, Ilechukwu NC, Horstick O, Winkler V. Porphyromonas Gingivalis as a Risk Factor to Alzheimer's Disease: A Systematic Review. J Alzheimers Dis Rep 2021; 5:721-732. [PMID: 34755046 PMCID: PMC8543378 DOI: 10.3233/adr-200237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease that accounts for more than 50% of all dementia cases worldwide. There is wide consensus on the risk factors of AD; however, a clear etiology remains unknown. Evidence suggests that the inflammatory-mediated disease model, such as that found with periodontal disease due to Porphyromonas gingivalis (P. gingivalis), plays a role in AD progression. OBJECTIVE This study aims to systematically review the literature on the association between P. gingivalis to AD, and to identify the homogeneity of the methods used across studies to measure P. gingivalis involvement in AD. METHODS We systematically searched studies on Cochrane library, Ovid Medline, PubMed, Web of Science, WHOLIS, Google Scholar databases, and reference lists of identified studies. RESULTS 6 studies out of 636 identified records fulfilled all eligibility criteria. Results showed no clear pathophysiology of AD due to P. gingivalis and its various virulence factors. No consensus was found in the literature pertaining to the method of measurement of AD or P. gingivalis and its virulence factors. CONCLUSION The included studies suggest that P. gingivalis bacteria play a role in the process of systemic inflammation which leads to cerebrospinal fluid inflammation and indirectly cause hastening of AD onset and progression. Our included studies revealed heterogeneity in the methodologies of measurement of AD and/or P. gingivalis and its virulence factors, which opens discussion about the benefits and weakness of possible standardization.
Collapse
Affiliation(s)
- Abdelrahman Elwishahy
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Khatia Antia
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Sneha Bhusari
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Olaf Horstick
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Winkler
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Meurman JH, Bascones-Martinez A. Oral Infections and Systemic Health - More than Just Links to Cardiovascular Diseases. ORAL HEALTH & PREVENTIVE DENTISTRY 2021; 19:441-448. [PMID: 34505498 PMCID: PMC11640876 DOI: 10.3290/j.ohpd.b1993965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE During the past 20 years, a plethora of research reports has been published showing a statistical association between poor oral health and cardiovascular diseases. The aim of this narrative review was to focus on associations between oral infections and non-atherosclerosis-related systemic diseases. MATERIALS AND METHODS An open literature search and evaluation of articles were conducted on Medline and Cochrane databases with the key words 'oral infection', 'periodontitis', 'pneumonia', 'osteoarthritis', 'rheumatic diseases', 'inflammatory bowel disease', 'kidney disease', 'liver diseases', 'metabolic syndrome', 'diabetes', 'cancer', 'Alzheimer's disease'. Cardiovascular diseases were excluded from the analysis. RESULTS The scarcity of controlled studies did not allow conducting a systematic review with meta-analysis on the topics, but dental infections have been shown be associated with several general diseases also beyond the atherosclerosis paradigm. However, there is no causal evidence of the role of dental infections in this regard. Poor oral health has nevertheless often been observed to be associated with worsening of the diseases and may also affect treatments. CONCLUSIONS Maintaining good oral health is imperative regarding many diseases, and its importance in the daily life of any patient group cannot be over emphasised.
Collapse
|
18
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
19
|
Exploring the Connection between Porphyromonas gingivalis and Neurodegenerative Diseases: A Pilot Quantitative Study on the Bacterium Abundance in Oral Cavity and the Amount of Antibodies in Serum. Biomolecules 2021; 11:biom11060845. [PMID: 34204019 PMCID: PMC8229521 DOI: 10.3390/biom11060845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies support the hypothesis that microbes can seed some Alzheimer’s disease (AD) cases, leading to inflammation and overproduction of amyloid peptides. Porphyromonas gingivalis (Pg) is a keystone pathogen of chronic periodontitis and has been identified as risk factor for the development and progression of AD. The present preliminary study aimed to quantify Pg abundance in neurodegenerative disease (ND) patients compared with neurologic patients without neurodegenerative disorders (no-ND) and healthy controls (HC) to determine possible association between Pg abundance and neurodegenerative process. Pg was quantified on DNA extracted from the oral samples of 49 patients and 29 HC by quantitative polymerase chain reaction (qPCR). Anti-Pg antibodies were also detected on patient serum samples by enzyme-linked immunosorbent assays (ELISA). The Pg abundance in the oral cavity was significantly different among groups (p = 0.004). It was higher in ND than no-ND (p = 0.010) and HC (p = 0.008). The Pg abundance was correlated with the antibodies (p = 0.001) with different slopes between ND and no-ND (p = 0.037). Pg abundance was not correlated with oral indices and comorbidities. These results extend our understanding of the association between oral pathogens and AD to other neurodegenerative processes, confirming the hypothesis that oral pathogens can induce an antibody systemic response, influencing the progression of the disease.
Collapse
|
20
|
Hill-Yardin EL, Grabrucker AM, Franks AE, Luna RA, Monif M. Editorial: Interactions of the Nervous System With Bacteria. Front Neurosci 2021; 15:682744. [PMID: 33967691 PMCID: PMC8102789 DOI: 10.3389/fnins.2021.682744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, Science Technology Engineering Mathematics College, Royal Melbourne Institute of Technology University, Bundoora, VIC, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Ruth Ann Luna
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Mastura Monif
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Olsen I. Can Porphyromonas gingivalis Contribute to Alzheimer's Disease Already at the Stage of Gingivitis? J Alzheimers Dis Rep 2021; 5:237-241. [PMID: 34113781 PMCID: PMC8150255 DOI: 10.3233/adr-210006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with periodontitis, which starts as gingivitis. Similar to periodontitis, gingivitis bacteria, bacterial products, and inflammatory mediators can travel to the brain via the blood stream and promote brain inflammation. Periodontal pathogens such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, both associated with AD, have been found in dental plaque of children already at the age of 3. It is suggested that these bacteria during long-term exposure may drive microglia (brain resident macrophage cells) into a pro-inflammatory M1 phase where they contribute to AD rather than protect against it. This notion comes from studies in mice showing that microglia actually can "remember" previous inflammatory challenge and become "trained" or "tolerant" to toxins like lipopolysaccharide. If gingivitis has an impact on AD, which should be verified, AD prophylaxis should start already at this pre-periodontitis stage with removal of supragingival plaque.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
23
|
Olsen I. Porphyromonas Gingivalis May Seek the Alzheimer's Disease Brain to Acquire Iron from Its Surplus. J Alzheimers Dis Rep 2021; 5:79-86. [PMID: 33681719 PMCID: PMC7903007 DOI: 10.3233/adr-200272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron accumulates in the brain of subjects with Alzheimer’s disease (AD). Here it promotes the aggregation of amyloid-β plaques in which it is abundant. Iron induces amyloid-β neurotoxicity by damaging free radicals and causing oxidative stress in brain areas with neurodegeneration. It can also bind to tau in AD and enhance the toxicity of tau through co-localization with neurofibrillary tangles and induce accumulation of these tangles. Porphyromonas gingivalis is a key oral pathogen in the widespread biofilm-induced disease “chronic” periodontitis, and recently, has been suggested to have an important role in the pathogenesis of AD. P. gingivalis has an obligate requirement for iron. The current paper suggests that P. gingivalis seeks the AD brain, where it has been identified, to satisfy this need. If this is correct, iron chelators binding iron could have beneficial effects in the treatment of AD. Indeed, studies from both animal AD models and humans with AD have indicated that iron chelators, e.g., lactoferrin, can have such effects. Lactoferrin can also inhibit P. gingivalis growth and proteinases and its ability to form biofilm.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
van Vuuren MJ, Nell TA, Carr JA, Kell DB, Pretorius E. Iron Dysregulation and Inflammagens Related to Oral and Gut Health Are Central to the Development of Parkinson's Disease. Biomolecules 2020; 11:E30. [PMID: 33383805 PMCID: PMC7823713 DOI: 10.3390/biom11010030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neuronal lesions in Parkinson's disease (PD) are commonly associated with α-synuclein (α-Syn)-induced cell damage that are present both in the central and peripheral nervous systems of patients, with the enteric nervous system also being especially vulnerable. Here, we bring together evidence that the development and presence of PD depends on specific sets of interlinking factors that include neuroinflammation, systemic inflammation, α-Syn-induced cell damage, vascular dysfunction, iron dysregulation, and gut and periodontal dysbiosis. We argue that there is significant evidence that bacterial inflammagens fuel this systemic inflammation, and might be central to the development of PD. We also discuss the processes whereby bacterial inflammagens may be involved in causing nucleation of proteins, including of α-Syn. Lastly, we review evidence that iron chelation, pre-and probiotics, as well as antibiotics and faecal transplant treatment might be valuable treatments in PD. A most important consideration, however, is that these therapeutic options need to be validated and tested in randomized controlled clinical trials. However, targeting underlying mechanisms of PD, including gut dysbiosis and iron toxicity, have potentially opened up possibilities of a wide variety of novel treatments, which may relieve the characteristic motor and nonmotor deficits of PD, and may even slow the progression and/or accompanying gut-related conditions of the disease.
Collapse
Affiliation(s)
- Marthinus Janse van Vuuren
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa; (M.J.v.V.); (T.A.N.)
| | - Theodore Albertus Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa; (M.J.v.V.); (T.A.N.)
| | - Jonathan Ambrose Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa; (M.J.v.V.); (T.A.N.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800 Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa; (M.J.v.V.); (T.A.N.)
| |
Collapse
|
25
|
Kanagasingam S, Chukkapalli SS, Welbury R, Singhrao SK. Porphyromonas gingivalis is a Strong Risk Factor for Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:501-511. [PMID: 33532698 PMCID: PMC7835991 DOI: 10.3233/adr-200250] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the several important bacterial pathogens associated with the sporadic Alzheimer’s disease (AD). Different serotypes are either capsulated or are non-capsulated. It has been demonstrated that P. gingivalis (non-capsulated) can reproduce the neurodegenerative AD-like changes in vitro, and a capsular P. gingivalis (strain W83) could reproduce the cardinal hallmark lesions of AD in a wild-type mouse model. All P. gingivalis forms express proteolytically active proteases that enable cleavage of the amyloid-β protin precursor (AβPP) and tau resulting in the formation of amyloid-β and neurofibrillary tangles. Tau is an established substrate for gingipains, which can cleave tau into various peptides. Some of the P. gingivalis fragmented tau protein peptides contain “VQIINK” and “VQIVYK” hexapeptide motifs which map to the flanking regions of the microtubule binding domains and are also found in paired helical filaments that form NFTs. P. gingivalis can induce peripheral inflammation in periodontitis and can also initiate signaling pathways that activate kinases, which in turn, phosphorylate neuronal tau. Periodontal disease related inflammation has metabolic implications for an individual’s peripheral and brain health as patients suffering from generalized periodontitis often have related co-morbidities and are “at risk” of developing AD. The aim here is to discuss the role of P. gingivalis behind such associations with the backdrop of huge efforts to test P. gingivalis virulence factors clinically (GAIN Trial: Phase 2/3 Study of COR388 in Subjects with AD) with inhibitors, which may lead to an intervention by reducing the pathogenic bacterial load.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sasanka S Chukkapalli
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
26
|
Olsen I, Singhrao SK. Interaction between genetic factors, Porphyromonas gingivalis and microglia to promote Alzheimer's disease. J Oral Microbiol 2020; 12:1820834. [PMID: 33062201 PMCID: PMC7534375 DOI: 10.1080/20002297.2020.1820834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In late-onset Alzheimer disease (AD) pathogenesis, genes, infections and immunity could be significant factors. We have reviewed if the keystone periodontal pathogen Porphyromonas gingivalis may affect genes and microglia (primary immune cells in the brain) to promote AD development. Genes for apolipoprotein, clusterin, CD33, triggering receptor expressed on myeloid cells-2 (TREM-2), tyrosine kinase binding protein (TYR-OBP), and complement receptors can affect microglia. Most of these genes can also be affected by P. gingivalis via its mastering of immune suppression. Besides, P. gingivalis can affect microglia directly in several ways. Taken together, genetic predisposition, P. gingivalis infection and microglia could promote neurodegeneration typical of that reported for AD.
Collapse
Affiliation(s)
- Ingar Olsen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
27
|
Rong X, Xiang L, Li Y, Yang H, Chen W, Li L, Liang D, Zhou X. Chronic Periodontitis and Alzheimer Disease: A Putative Link of Serum Proteins Identification by 2D-DIGE Proteomics. Front Aging Neurosci 2020; 12:248. [PMID: 32973486 PMCID: PMC7472842 DOI: 10.3389/fnagi.2020.00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence indicates Chronic Periodontitis (CP) is a comorbidity of Alzheimer’s disease (AD), which is the most common form of age-related dementia, and for the latter, effective diagnostic and treatment strategies are lacking. Although inflammation is present in both diseases, the exact mechanisms and cross-links between CP and AD are poorly understood; and a direct association between the two has not been reported. This study aimed to identify a direct serum proteins link between AD and CP. Two-dimensional differential in-gel electrophoresis was employed to analyze serum samples from 12 CP patients and 12 age-matched controls. Furthermore, to determine the molecular link between CP and AD, neuroblastoma SK-N-SH APPwt cells were treated with 1 μg/ml of lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS). Ten differentially expressed proteins were identified in CP patients. Among them, nine proteins were up-regulated, and one protein was down-regulated. Of the 10 differentially expressed proteins, five proteins were reportedly involved in the pathology of AD: Cofilin-2, Cathepsin B, Clusterin, Triosephosphate isomerase, and inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4). Western blotting indicated significantly higher expression of Cofilin-2, Cathepsin B, and Clusterin and lower expression of ITI-H4 in the CP group than in the Control group. The serum concentration of Cathepsin B has a good correlation with MMSE scores. Moreover, the protein level of Cathepsin B (but not that of ADAM10 and BACE1) increased significantly along with a prominent increase in Aβ1–40 and Aβ1–42 in the cell lysates of P.g-LPS-treated SK-N-SH APPwt cells. Cathepsin B inhibition resulted in a sharp decrease in Aβ1–40 and Aβ1–42 in the cell lysates. Furthermore, TNF-α was one of the most important inflammatory cytokines for the P.g-LPS-induced Cathepsin B upregulation in SK-N-SH APPwt cells. These results show that CP and AD share an association, while Cathepsin B could be a key link between the two diseases. The discovery of the identical serum proteins provides a potential mechanism underlying the increased risk of AD in CP patients, which could be critical for elucidating the pathophysiology of AD.
Collapse
Affiliation(s)
- Xianfang Rong
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Liping Xiang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yanfen Li
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Hongfa Yang
- Department of Cardiology, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Weijian Chen
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Lei Li
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Defeng Liang
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xincai Zhou
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
28
|
Nunes JM, Fillis T, Page MJ, Venter C, Lancry O, Kell DB, Windberger U, Pretorius E. Gingipain R1 and Lipopolysaccharide From Porphyromonas gingivalis Have Major Effects on Blood Clot Morphology and Mechanics. Front Immunol 2020; 11:1551. [PMID: 32793214 PMCID: PMC7393971 DOI: 10.3389/fimmu.2020.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background:Porphyromonas gingivalis and its inflammagens are associated with a number of systemic diseases, such as cardiovascular disease and type 2 diabetes (T2DM). The proteases, gingipains, have also recently been identified in the brains of Alzheimer's disease patients and in the blood of Parkinson's disease patients. Bacterial inflammagens, including lipopolysaccharides (LPSs) and various proteases in circulation, may drive systemic inflammation. Methods: Here, we investigate the effects of the bacterial products LPS from Escherichia coli and Porphyromonas gingivalis, and also the P. gingivalis gingipain [recombinant P. gingivalis gingipain R1 (RgpA)], on clot architecture and clot formation in whole blood and plasma from healthy individuals, as well as in purified fibrinogen models. Structural analysis of clots was performed using confocal microscopy, scanning electron microscopy, and AFM-Raman imaging. We use thromboelastography® (TEG®) and rheometry to compare the static and dynamic mechanical properties of clots. Results: We found that these inflammagens may interact with fibrin(ogen) and this interaction causes anomalous blood clotting. Conclusions: These techniques, in combination, provide insight into the effects of these bacterial products on cardiovascular health, and particularly clot structure and mechanics.
Collapse
Affiliation(s)
- J Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Tristan Fillis
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ophélie Lancry
- HORIBA Scientific, HORIBA FRANCE SAS, Villeneuve-d'Ascq, France
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ursula Windberger
- Decentralised Biomedical Facilities, Centre for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
29
|
Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APP NL-G-F/NL-G-F mouse model. Brain Res 2020; 1746:147022. [PMID: 32707043 DOI: 10.1016/j.brainres.2020.147022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological processes, including the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, and neuroinflammation, lead to cognitive impairment at middle and eventually later stages of AD progression. Over the last decade, focused efforts have explored repurposed drug approaches for AD pathophysiological mechanisms. Recently, auranofin, an anti-inflammatory drug, was shown to have therapeutic potential in a number of diseases in addition to rheumatoid arthritis. Surprisingly, no data regarding the effects of auranofin on cognitive deficits in AD mice or the influence of auranofin on Aβ pathology and neuroinflammatory processes are available. In the present study, we used 14-month-old transgenic male APPNL-G-F/NL-G-F mice to assess the effects of subchronic administration of auranofin at low doses (1 and 5 mg/kg, intraperitoneal) on spatial memory, Aβ pathology and the expression of cortical and hippocampal proteins (glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule-1 (Iba-1)) and proteins related to synaptic plasticity (glutamic acid decarboxylase 67 (GAD67), homer proteins homologue-1 (Homer-1)). The data demonstrated that auranofin significantly decreased Aβ deposition in the hippocampus and the number of Aβ plaques in the cingulate cortex, but it did not have memory-enhancing effects or induce changes in the expression of the studied proteins. Our current results highlight the importance of considering further pre-clinical research to investigate the possible beneficial effects of auranofin on the other pathological aspects of AD.
Collapse
|
30
|
Olsen I, Singhrao SK. Porphyromonas gingivalis infection may contribute to systemic and intracerebral amyloid-beta: implications for Alzheimer's disease onset. Expert Rev Anti Infect Ther 2020; 18:1063-1066. [PMID: 32663042 DOI: 10.1080/14787210.2020.1792292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo , Oslo, Norway
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire , Preston, UK
| |
Collapse
|
31
|
Olsen I, Kell DB, Pretorius E. Is Porphyromonas gingivalis involved in Parkinson's disease? Eur J Clin Microbiol Infect Dis 2020; 39:2013-2018. [PMID: 32564247 PMCID: PMC7561584 DOI: 10.1007/s10096-020-03944-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Porphyromonas gingivalis, a major subgingival plaque bacterium in periodontitis, has recently attracted much attention as a possible microbial driver in Alzheimer's disease. In the present paper, another common neuroinflammatory disease, Parkinson's disease (PD), is discussed. A recent study found major virulence factors of P. gingivalis such as gingipain R1 (RgpA) and lipopolysaccharide in the blood circulation of a PD population. The current review reveals how features such as systemic inflammation, hypercoagulation, presence of amyloid fibrin(ogen) in plasma, and marked ultrastructural changes in platelets, probably induced by P. gingivalis, may affect the development of PD. Several other clinical studies have also demonstrated an association between periodontitis and PD. Even if the risk of periodontal diseases causing neurological disorders needs to be better substantiated, that should not keep us from trying to prevent them by performing careful daily dental hygiene.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, POB 1052 Blindern, 0316, Oslo, Norway.
| | - Douglas B Kell
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
Invasion of Human Retinal Pigment Epithelial Cells by Porphyromonas gingivalis leading to Vacuolar/Cytosolic localization and Autophagy dysfunction In-Vitro. Sci Rep 2020; 10:7468. [PMID: 32366945 PMCID: PMC7198524 DOI: 10.1038/s41598-020-64449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.
Collapse
|
33
|
Askarova S, Umbayev B, Masoud AR, Kaiyrlykyzy A, Safarova Y, Tsoy A, Olzhayev F, Kushugulova A. The Links Between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer's Disease. Front Cell Infect Microbiol 2020; 10:104. [PMID: 32257964 PMCID: PMC7093326 DOI: 10.3389/fcimb.2020.00104] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Gut microbiome is a community of microorganisms in the gastrointestinal tract. These bacteria have a tremendous impact on the human physiology in healthy individuals and during an illness. Intestinal microbiome can influence one's health either directly by secreting biologically active substances such as vitamins, essential amino acids, lipids et cetera or indirectly by modulating metabolic processes and the immune system. In recent years considerable information has been accumulated on the relationship between gut microbiome and brain functions. Moreover, significant quantitative and qualitative changes of gut microbiome have been reported in patients with Alzheimer's disease. On the other hand, gut microbiome is highly sensitive to negative external lifestyle aspects, such as diet, sleep deprivation, circadian rhythm disturbance, chronic noise, and sedentary behavior, which are also considered as important risk factors for the development of sporadic Alzheimer's disease. In this regard, this review is focused on analyzing the links between gut microbiome, modern lifestyle, aging, and Alzheimer's disease.
Collapse
Affiliation(s)
- Sholpan Askarova
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40496-019-0212-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|