1
|
Liu L, Nguyen SM, Wang L, Shi J, Long J, Cai Q, Shrubsole MJ, Shu XO, Zheng W, Yu D. Associations of alcohol intake with gut microbiome: a prospective study in a predominantly low-income Black/African American population. Am J Clin Nutr 2025; 121:134-140. [PMID: 39537028 PMCID: PMC11747185 DOI: 10.1016/j.ajcnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Alcohol intake can alter gut microbiome, which may subsequently affect human health. However, limited population-based, prospective studies have investigated associations of habitual and recent alcohol intake with the gut microbiome, particularly among Black/African American individuals. OBJECTIVE We examined the association of alcohol intake with gut microbiome in a predominantly low-income Black/African American population. METHODS We investigated the dose- and type-specific associations of habitual and recent alcohol intake with the gut microbiome among 538 Black/African American adults (150 males and 388 females). Habitual and recent alcohol intakes were assessed at cohort baseline (2002-2009) and stool collection (2018-2021), respectively. Gut microbiome was profiled using shotgun metagenomic sequencing. Generalized linear models were employed to evaluate the associations between alcohol intakes and gut microbiome composition, with adjustments for sociodemographic characteristics, other lifestyle factors, and comorbidities. False discovery rate (FDR) <0.1 was considered statistically significant. RESULTS The mean age at enrollment was 53.2 ± 7.7 y, with a mean interval of 13.8 y (range: 9.0-18.1 y) between baseline and stool sample collection. Recent alcohol intake was not significantly associated with microbial taxa abundance. However, habitual alcohol intake, both total amount and types of alcoholic beverages, showed significant associations with several microbial taxa abundance, primarily in males, including species within classes Clostridia, Bacilli, and Mahellia within Firmicutes. Specifically, total alcohol, beer, and red wine intakes were all inversely associated with genus MGYG-HGUT-02719 within class Clostridia (β = -2.26 to -0.09 per 1 drink/d increase). Red wine consumption was also inversely associated with the abundance of genera CAG-110, Oscillibacter, and Gemmiger within class Clostridia (β = -3.88 to -2.69), whereas positively associated with genus Absiella (β = 1.81) within class Bacilli. Most of these associations remained significant after additionally adjusting for BMI and baseline comorbidities. CONCLUSIONS We identified gut microbial taxa associated with habitual alcohol intake among Black/African American males, although the magnitudes of these associations were generally small. Further research is needed to determine if these bacteria modify alcohol-disease relationships.
Collapse
Affiliation(s)
- Lili Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sang M Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lei Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
2
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
3
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
4
|
Esposito MM, Kalinowski J, Mikhaeil M. The Effects of Recreational and Pharmaceutical Substance Use on Oral Microbiomes and Health. BACTERIA 2024; 3:209-222. [DOI: 10.3390/bacteria3030015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Oral health remains one of the most taken for granted parts of human body health, even though poor oral health has now been linked to various diseases, such as cancers, diabetes, autoimmune complications, neurological disorders, and cardiovascular disease, just to name a few. As we review in this paper, substance use or abuse, including alcohol, smoking, recreational drugs, and pharmaceutical drugs can have significant implications on oral health, which in turn can lead to more systemic diseases. In this paper, we show that oral microbiome dysbiosis and inflammatory cytokine pathways are two of the most significant mechanisms contributing to oral health complications from substance use. When substance use decreases beneficial oral species and increases periodontopathogenic strains, a subsequent cascade of oncogenic and inflammatory cytokines is triggered. In this review, we explore these mechanisms and others to determine the consequences of substance use on oral health. The findings are of significance clinically and in research fields as the substance-use-induced deterioration of oral health significantly reduces quality of life and daily functions. Overall, the studies in this review may provide valuable information for future personalized medicine and safer alternatives to legal and pharmaceutical substances. Furthermore, they can lead towards better rehabilitation or preventative initiatives and policies, as it is critical for healthcare and addiction aid specialists to have proper tools at their disposal.
Collapse
Affiliation(s)
- Michelle Marie Esposito
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Macaulay Honors College, City University of New York, New York, NY 10023, USA
| | - Julia Kalinowski
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- Macaulay Honors College, City University of New York, New York, NY 10023, USA
| | - Mirit Mikhaeil
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, New York, NY 10314, USA
- DMD Program, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Tao K, Yuan Y, Xie Q, Dong Z. Relationship between human oral microbiome dysbiosis and neuropsychiatric diseases: An updated overview. Behav Brain Res 2024; 471:115111. [PMID: 38871130 DOI: 10.1016/j.bbr.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of the gut-brain axis in mental health disorders has been extensively studied. As the oral cavity is the starting point of the digestive tract, the role that the oral microbiota plays in mental health disorders has gained recent attention. Oral microbiota can enter the bloodstream and trigger inflammatory responses or translocate to the brain through the trigeminal nerve or olfactory system. Hence, the concept of the oral microbiota-brain axis has emerged. Several hypotheses have been suggested that the oral microbiota can enter the gastrointestinal tract and affect the gut-brain axis; however, literature describing oral-brain communication remains limited. This review summarizes the characteristics of oral microbiota and its mechanisms associated with mental health disorders. Through a comprehensive examination of the relationship between oral microbiota and various neuropsychiatric diseases, such as anxiety, depression, schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, and dementia, this review seeks to identify promising avenues of future research.
Collapse
Affiliation(s)
- Kai Tao
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Outpatient, West China Xiamen Hospital, Sichuan University, Fujian 361022, People's Republic of China.
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
6
|
Maki KA, Wallen GR, Bastiaanssen TF, Hsu LY, Valencia ME, Ramchandani VA, Schwandt ML, Diazgranados N, Cryan JF, Momenan R, Barb JJ. The gut-brain axis in individuals with alcohol use disorder: An exploratory study of associations among clinical symptoms, brain morphometry, and the gut microbiome. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1261-1277. [PMID: 38982564 PMCID: PMC11239122 DOI: 10.1111/acer.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is commonly associated with distressing psychological symptoms. Pathologic changes associated with AUD have been described in both the gut microbiome and brain, but the mechanisms underlying gut-brain signaling in individuals with AUD are unknown. This study examined associations among the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking individuals with AUD. METHODS We performed a secondary analysis of data collected during inpatient treatment for AUD in subjects who provided gut microbiome samples and had structural brain magnetic resonance imaging (MRI; n = 16). Shotgun metagenomics sequencing was performed, and the morphometry of brain regions of interest was calculated. Clinical symptom severity was quantified using validated instruments. Gut-brain modules (GBMs) used to infer neuroactive signaling potential from the gut microbiome were generated in addition to microbiome features (e.g., alpha diversity and bacterial taxa abundance). Bivariate correlations were performed between MRI and clinical features, microbiome and clinical features, and MRI and microbiome features. RESULTS Amygdala volume was significantly associated with alpha diversity and the abundance of several bacteria including taxa classified to Blautia, Ruminococcus, Bacteroides, and Phocaeicola. There were moderate associations between amygdala volume and GBMs, including butyrate synthesis I, glutamate synthesis I, and GABA synthesis I & II, but these relationships were not significant after false discovery rate (FDR) correction. Other bacterial taxa with shared associations to MRI features and clinical symptoms included Escherichia coli and Prevotella copri. CONCLUSIONS We identified gut microbiome features associated with MRI morphometry and AUD-associated symptom severity. Given the small sample size and bivariate associations performed, these results require confirmation in larger samples and controls to provide meaningful clinical inferences. Nevertheless, these results will inform targeted future research on the role of the gut microbiome in gut-brain communication and how signaling may be altered in patients with AUD.
Collapse
Affiliation(s)
- Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Thomaz F.S. Bastiaanssen
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Li-Yueh Hsu
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael E. Valencia
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A. Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie L. Schwandt
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - John F. Cryan
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Browning BD, Kirkland AE, Green R, Liu H, Glover JS, Ticer TD, Engevik MA, Alekseyenko AV, Ferguson PL, Tomko RL, Squeglia LM. Adolescent alcohol use is associated with differences in the diversity and composition of the oral microbiome. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1025-1035. [PMID: 38631877 PMCID: PMC11178446 DOI: 10.1111/acer.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Adolescence is a sensitive stage of oral microbial development that often coincides with the initiation and escalation of alcohol use. Thus, adolescents may be particularly susceptible to alcohol-induced alterations in the oral microbiome, though minimal research has been done in this area. Understanding the connection between the oral microbiome and alcohol use during adolescence is important to understand fully the biological consequences of alcohol use to mitigate potential adverse outcomes. METHODS Saliva samples were collected from adolescents aged 17-19 who used alcohol heavily (n = 21, 52.4% female) and those who did not use alcohol or any other substances (n = 18, 44.4% female). We utilized 16S rRNA sequencing to examine differences in microbial diversity and composition between the groups. RESULTS For alpha diversity, evenness was significantly lower in the drinking group than the control group as indicated by Pielou's evenness, Shannon, and Simpson indices. There were no statistically significant findings for beta diversity. Differential abundance analyses revealed higher abundances of Rothia and Corynebacterium in the alcohol-using group using both centered-log-ratio and relative abundance normalization. These genera are known for their high capacity to convert alcohol into acetaldehyde, a toxic metabolite reported to play a role in the neurobiological effects of alcohol. An unclassified Clostridia UCG-014, Streptobacillus, Comamonas, unclassified Lachnospiraceae, and Parvimonas were also identified as significantly different between groups when using only one of the normalization techniques. CONCLUSIONS This is the first study designed specifically to compare the oral microbiome of adolescents who use alcohol with that of control participants. Our findings reveal distinct alcohol-related differences in microbial composition and taxon abundance, emphasizing the importance of understanding the impact on the oral microbiome of alcohol use during adolescence. Because the oral microbiome is malleable, this study provides foundational work for future prevention and intervention studies.
Collapse
Affiliation(s)
- Brittney D. Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Anna E. Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Helen Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Janiece S. Glover
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Taylor D. Ticer
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mindy A. Engevik
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Pamela L. Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel L. Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M. Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
8
|
Laumen JGE, Van Dijck C, Manoharan-Basil SS, de Block T, Abdellati S, Xavier BB, Malhotra-Kumar S, Kenyon C. The effect of daily usage of Listerine Cool Mint mouthwash on the oropharyngeal microbiome: a substudy of the PReGo trial. J Med Microbiol 2024; 73. [PMID: 38833520 DOI: 10.1099/jmm.0.001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Introduction. ListerineÒ is a bactericidal mouthwash widely used to prevent oral health problems such as dental plaque and gingivitis. However, whether it promotes or undermines a healthy oral microbiome is unclear.Hypothesis/Gap Statement. We hypothesized that the daily use of Listerine Cool Mint would have a significant impact on the oropharyngeal microbiome.Aim. We aimed to assess if daily usage of Listerine Cool Mint influenced the composition of the pharyngeal microbiome.Methodology. The current microbiome substudy is part of the Preventing Resistance in Gonorrhoea trial. This was a double-blind single-centre, crossover, randomized controlled trial of antibacterial versus placebo mouthwash to reduce the incidence of gonorrhoea/chlamydia/syphilis in men who have sex with men (MSM) taking HIV pre-exposure prophylaxis (PrEP). Fifty-nine MSM taking HIV PrEP were enrolled. In this crossover trial, participants received 3 months of daily Listerine followed by 3 months of placebo mouthwash or vice versa. Oropharyngeal swabs were taken at baseline and after 3 months use of each mouthwash. DNA was extracted for shotgun metagenomic sequencing (Illumina Inc.). Non-host reads were taxonomically classified with MiniKraken and Bracken. The alpha and beta diversity indices were compared between baseline and after each mouthwash use. Differentially abundant bacterial taxa were identified using ANOVA-like differential expression analysis.Results. Streptococcus was the most abundant genus in most samples (n = 103, 61.7 %) with a median relative abundance of 31.5% (IQR 20.6-44.8), followed by Prevotella [13.5% (IQR 4.8-22.6)] and Veillonella [10.0% (IQR 4.0-16.8)]. Compared to baseline, the composition of the oral microbiome at the genus level (beta diversity) was significantly different after 3 months of Listerine (P = 0.006, pseudo-F = 2.29) or placebo (P = 0.003, pseudo-F = 2.49, permutational multivariate analysis of variance) use. Fusobacterium nucleatum and Streptococcus anginosus were significantly more abundant after Listerine use compared to baseline.Conclusion. Listerine use was associated with an increased abundance of common oral opportunistic bacteria previously reported to be enriched in periodontal diseases, oesophageal and colorectal cancer, and systemic diseases. These findings suggest that the regular use of Listerine mouthwash should be carefully considered.
Collapse
Affiliation(s)
- J G E Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine, STI Unit, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - C Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, STI Unit, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - S S Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine, STI Unit, Antwerp, Belgium
| | - T de Block
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, Antwerp, Belgium
| | - S Abdellati
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, Antwerp, Belgium
| | - B B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - S Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - C Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Gandhi UH, Benjamin A, Gajjar S, Hirani T, Desai K, Suhagia BB, Ahmad R, Sinha S, Haque M, Kumar S. Alcohol and Periodontal Disease: A Narrative Review. Cureus 2024; 16:e62270. [PMID: 39006719 PMCID: PMC11246185 DOI: 10.7759/cureus.62270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The scientific literature dealing with alcohol and alcoholic beverages revealed that these drinks possess an adverse impact on periodontal tissues. Additionally, other principal risk factors include tobacco, smoking, poor oral hygiene, etc. It has been observed that among chronic alcoholics, there are further issues, such as mental, social, and physical effects, that promote alcoholism. These people may have weak immunity for defense against pathogenic organisms and bacteria. Thus, chances of gingival bleeding, swollen gums, bad breath, and increased bone loss are there. Different alcoholic beverages in the market cause less salivation; these beverages contain sugars that promote acid production in the oral cavity by pathogens that demineralize the enamel and damage gum and teeth. This chronic alcohol consumption can progress into different types of oral disorders, including cancer, halitosis, and caries, and is also associated with tobacco and smoking. Chronic alcohol consumption can cause alteration of the oral microbiome and increase oral pathogens, which lead to periodontal disease and an environment of inflammation created in the body due to malnutrition, diminished immunity, altered liver condition, brain damage, and gut microbiota alteration. Heavily colored alcoholic beverages produce staining on teeth and, due to less saliva, may cause other toxic effects on the periodontium. Over-dependency on alcohol leads to necrotizing lesions such as necrotizing gingivitis, necrotizing periodontitis, and necrotizing stomatitis. These pathological impairments instigate severe damage to oral structures. Therefore, proper counseling by the attending dental surgeon and related health professionals is urgently required for the patient on the basis that the individual case needs to go away from the regular heavy consumption of alcohol.
Collapse
Affiliation(s)
- Utsav H Gandhi
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Amit Benjamin
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shreya Gajjar
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Khushboo Desai
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bansariben B Suhagia
- Department of Periodontology, Ahmedabad Dental College and Hospital, Gujarat University, Ahmedabad, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center, School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Department of Periodontology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
10
|
Maki KA, Crayton CB, Butera G, Wallen GR. Examining the relationship between the oral microbiome, alcohol intake and alcohol-comorbid neuropsychological disorders: protocol for a scoping review. BMJ Open 2024; 14:e079823. [PMID: 38514150 PMCID: PMC10961520 DOI: 10.1136/bmjopen-2023-079823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Heavy alcohol use and alcohol use disorder (AUD) continues to rise as a public health problem and increases the risk for disease. Elevated rates of anxiety, depression, sleep disruption and stress are associated with alcohol use. Symptoms may progress to diagnosed neurophysiological conditions and increase risk for relapse if abstinence is attempted. Research on mechanisms connecting the gastrointestinal microbiome to neuropsychological disorders through the gut-brain axis is well-established. Less is known how the oral microbiome and oral microbial-associated biomarkers may signal to the brain. Therefore, a synthesis of research studying relationships between alcohol intake, alcohol-associated neurophysiological symptoms and the oral microbiome is needed to understand the state of the current science. In this paper, we outline our protocol to collect, evaluate and synthesise research focused on associations between alcohol intake and AUD-related neuropsychological disorders with the oral microbiome. METHODS AND ANALYSIS The search strategy was developed and will be executed in collaboration with a medical research librarian. Studies will be screened by two independent investigators according to the aim of the scoping review, along with the outlined exclusion and inclusion criteria. After screening, data will be extracted and synthesised from the included papers according to predefined demographic, clinical and microbiome methodology metrics. ETHICS AND DISSEMINATION A scoping review of primary sources is needed to synthesise the data on relationships between alcohol use, neuropsychological conditions associated with AUD and the oral microbiome. The proposed scoping review is based on the data from publicly available databases and does not require ethical approval. We expect the results of this synthesis will identify gaps in the growing literature and highlight potential mechanisms linking the oral-brain axis to addiction and other associated neuropsychological conditions. The study findings and results will be disseminated through journals and conferences related to psychology, neuroscience, dentistry and the microbiome.
Collapse
Affiliation(s)
- Katherine A Maki
- Clinical Center, Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Chelsea B Crayton
- Clinical Center, Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Gisela Butera
- Division of Library Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwenyth R Wallen
- Clinical Center, Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
12
|
Ward G, Wurster JI, Lamb PS, DeCost G, Belenky P, Monnig MA. Alcohol consumption and oral microbiome composition in a sample of healthy young adults. Alcohol Alcohol 2023; 58:573-577. [PMID: 37501505 PMCID: PMC10642607 DOI: 10.1093/alcalc/agad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The oral microbiomes of 24 healthy adults (50% female; mean age = 24.3) were examined using 16 s ribosomal RNA sequencing and compared between light and heavy drinkers. Beta diversity was related at the trend level to drinking group, and light drinkers had significantly higher abundances of key oral taxa such as Lactobacillales. These preliminary results may offer insight into early effects of heavy drinking on the composition of the oral microbiome.
Collapse
Affiliation(s)
- Gyles Ward
- New York University Langone Health, New York, NY 10016, United States
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States
| | - Philip S Lamb
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, United States
| | - Grace DeCost
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI 02912, United States
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States
| | - Mollie A Monnig
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI 02912, United States
| |
Collapse
|
13
|
Farmer N, Maki KA, Barb JJ, Jones KK, Yang L, Baumer Y, Powell-Wiley TM, Wallen GR. Geographic social vulnerability is associated with the alpha diversity of the human microbiome. mSystems 2023; 8:e0130822. [PMID: 37642431 PMCID: PMC10654076 DOI: 10.1128/msystems.01308-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/26/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE As a risk factor for conditions related to the microbiome, understanding the role of SVI on microbiome diversity may assist in identifying public health implications for microbiome research. Here we found, using a sub-sample of the Human Microbiome Project phase 1 cohort, that SVI was linked to microbiome diversity across body sites and that SVI may influence race/ethnicity-based differences in diversity. Our findings, build on the current knowledge regarding the role of human geography in microbiome research, suggest that measures of geographic social vulnerability be considered as additional contextual factors when exploring microbiome alpha diversity.
Collapse
Affiliation(s)
- Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Kelly K. Jones
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
| | - Li Yang
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Tiffany M. Powell-Wiley
- Intramural Research Program, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, USA
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
15
|
Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH, Tsai PF, Ko NY, Ko WC, Wang JL. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol 2023; 13:1056534. [PMID: 36816590 PMCID: PMC9932516 DOI: 10.3389/fcimb.2023.1056534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chlorhexidine (CHX) and essential oil containing mouthwashes like Listerine® can improve oral hygiene via suppressing oral microbes. In hospitalized patients, CHX mouthwash reduces the incidence of ventilator-associated pneumonia. However, CHX use was also associated with increased mortality, which might be related to nitrate-reducing bacteria. Currently, no study determines oral bacteria targeted by essential oils mouthwash in hospitalized patients using a metagenomic approach. Methods We recruited 87 hospitalized patients from a previous randomized control study, and assigned them to three mouthwash groups: CHX, Listerine, and normal saline (control). Before and after gargling the mouthwash twice a day for 5-7 days, oral bacteria were examined using a 16S rDNA approach. Results Alpha diversities at the genus level decreased significantly only for the CHX and Listerine groups. Only for the two groups, oral microbiota before and after gargling were significantly different, but not clearly distinct. Paired analysis eliminated the substantial individual differences and revealed eight bacterial genera (including Prevotella, Fusobacterium, and Selenomonas) with a decreased relative abundance, while Rothia increased after gargling the CHX mouthwash. After gargling Listerine, seven genera (including Parvimonas, Eubacterium, and Selenomonas) showed a decreased relative abundance, and the magnitudes were smaller compared to the CHX group. Fewer bacteria targeted by Listerine were reported to be nitrate-reducing compared to the CHX mouthwash. Discussion In conclusion, short-term gargling of the CHX mouthwash and Listerine altered oral microbiota in our hospitalized patients. The bacterial genera targeted by the CHX mouthwash and Listerine were largely different and the magnitudes of changes were smaller using Listerine. Functional alterations of gargling CHX and Listerine were also different. These findings can be considered for managing oral hygiene of hospitalized patients.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chin Chen
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Cheng-Han Lin
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Jiun-Ling Wang,
| |
Collapse
|
16
|
Duarte-Coimbra S, Forcina G, Pérez-Pardal L, Beja-Pereira A. Characterization of tongue dorsum microbiome in wine tasters. Food Res Int 2023; 163:112259. [PMID: 36596171 DOI: 10.1016/j.foodres.2022.112259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Taste plays a paramount role in food and beverage choice, with recent studies pointing to a potential influence of the microorganisms from the tongue dorsum - particularly bacteria - on flavor perception. Thus, the association between tongue dorsum biofilm and taste is a fundamental prerequisite for a better understanding of the role played by these bacteria in wine tasting. To study this impact, we have analyzed the microbiomes from 58 samples of the tongue dorsum surface from professional wine tasters and 30 samples from non professional wine tasters. The microbiome of each sample was characterized through metagenome sequencing of the 16S rRNA gene for taxonomic discrimination of bacteria. A total of 497 taxa were identified in the tongue dorsum, and significant differences in diversity were observed between the wine taster and the control group. The comparison of bacterial diversity between samples collected before and after wine tasting along with the presence of new bacterial taxa indicates a direct effect of wine on the microbiome of frequent wine tasters, particularly in those tasting sparkling wines.
Collapse
Affiliation(s)
- Sofia Duarte-Coimbra
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Giovanni Forcina
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Global Change Ecology and Evolution Research Group (GloCEE), Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Lucía Pérez-Pardal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal; Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal.
| |
Collapse
|
17
|
Maki KA, Wolff B, Varuzza L, Green SJ, Barb JJ. Multi-amplicon microbiome data analysis pipelines for mixed orientation sequences using QIIME2: Assessing reference database, variable region and pre-processing bias in classification of mock bacterial community samples. PLoS One 2023; 18:e0280293. [PMID: 36638095 PMCID: PMC9838852 DOI: 10.1371/journal.pone.0280293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023] Open
Abstract
Microbiome research relies on next-generation sequencing and on downstream data analysis workflows. Several manufacturers have introduced multi-amplicon kits for microbiome characterization, improving speciation, but present unique challenges for analysis. The goal of this methodology study was to develop two analysis pipelines specific to mixed-orientation reads from multi-hypervariable (V) region amplicons. A secondary aim was to assess agreement with expected abundance, considering database and variable region. Mock community sequence data (n = 41) generated using the Ion16S™ Metagenomics Kit and Ion Torrent Sequencing Platform were analyzed using two workflows. Amplicons from V2, V3, V4, V6-7, V8 and V9 were deconvoluted using a specialized plugin based on CutPrimers. A separate workflow using Cutadapt is also presented. Three reference databases (Ribosomal Database Project, Greengenes and Silva) were used for taxonomic assignment. Bray-Curtis, Euclidean and Jensen-Shannon distance measures were used to evaluate overall annotation consistency, and specific taxon agreement was determined by calculating the ratio of observed to expected relative abundance. Reads that mapped to regions V2-V9 varied for both CutPrimers and Cutadapt-based methods. Within the CutPrimers-based pipeline, V3 amplicons had the best agreement with the expected distribution, tested using global distance measures, while V9 amplicons had the worst agreement. Accurate taxonomic annotation varied by genus-level taxon and V region analyzed. For the first time, we present a microbiome analysis pipeline that employs a specialized plugin to allow microbiome researchers to separate multi-amplicon data from the Ion16S Metagenomics Kit into V-specific reads. We also present an additional analysis workflow, modified for Ion Torrent mixed orientation reads. Overall, the global agreement of amplicons with the expected mock community abundances differed across V regions and reference databases. Benchmarking data should be referenced when planning a microbiome study to consider these biases related to sequencing and data analysis for multi-amplicon sequencing kits.
Collapse
Affiliation(s)
- Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Brian Wolff
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States of America
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
18
|
The Discovery of Oropharyngeal Microbiota with Inhibitory Activity against Pathogenic Neisseria gonorrhoeae and Neisseria meningitidis: An In Vitro Study of Clinical Isolates. Microorganisms 2022; 10:microorganisms10122497. [PMID: 36557750 PMCID: PMC9787740 DOI: 10.3390/microorganisms10122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With increasing incidence of pathogenic Neisseria infections coupled with emerging resistance to antimicrobials, alternative approaches to limit the spread are sought. We investigated the inhibitory effect of oropharyngeal microbiota on the growth of N. gonorrhoeae and N. meningitidis and the impact of the essential oil-based mouthwash Listerine Cool Mint® (Listerine). Oropharyngeal swabs from 64 men who have sex with men (n = 118) from a previous study (PReGo study) were analysed (ClinicalTrials.gov, NCT03881007). These included 64 baseline and 54 samples following three months of daily use of Listerine. Inhibition was confirmed by agar overlay assay, and inhibitory bacteria isolated using replica plating and identified using MALDI-TOF. The number of inhibitory isolates were compared before and after Listerine use. Thirty-one pharyngeal samples (26%) showed inhibitory activity against N. gonorrhoeae and/or N. meningitidis, and 62 inhibitory isolates were characterised. Fourteen species belonging to the genera Streptococci and Rothia were identified. More inhibitory isolates were observed following Listerine use compared to baseline, although this effect was not statistically significant (p = 0.073). This study isolated and identified inhibitory bacteria against pathogenic Neisseria spp. and established that daily Listerine use did not decrease their prevalence. These findings could provide a new approach for the prevention and treatment of pharyngeal Neisseria infections.
Collapse
|
19
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
20
|
Li X, Zhao K, Chen J, Ni Z, Yu Z, Hu L, Qin Y, Zhao J, Peng W, Lu L, Gao X, Sun H. Diurnal changes of the oral microbiome in patients with alcohol dependence. Front Cell Infect Microbiol 2022; 12:1068908. [PMID: 36579346 PMCID: PMC9791055 DOI: 10.3389/fcimb.2022.1068908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Saliva secretion and oral microbiota change in rhythm with our biological clock. Dysbiosis of the oral microbiome and alcohol consumption have a two-way interactive impact, but little is known about whether the oral microbiome undergoes diurnal changes in composition and function during the daytime in patients with alcohol dependence (AD). Methods The impact of alcohol consumption on the diurnal salivary microbiome was examined in a case-control study of 32 AD patients and 21 healthy control (HC) subjects. We tested the changes in microbial composition and individual taxon abundance by 16S rRNA gene sequencing. Results The present study is the first report showing that alcohol consumption enhanced the richness of the salivary microbiome and lowered the evenness. The composition of the oral microbiota changed significantly in alcohol-dependent patients. Additionally, certain genera were enriched in the AD group, including Actinomyces, Leptotrichia, Sphaerochaeta and Cyanobacteria, all of which have pathogenic effects on the host. There is a correlation between liver enzymes and oral microbiota. KEGG function analysis also showed obvious alterations during the daytime. Conclusion Alcohol drinking influences diurnal changes in the oral microbiota, leading to flora disturbance and related functional impairment. In particular, the diurnal changes of the oral microbiota may open avenues for potential interventions that can relieve the detrimental consequences of AD.
Collapse
Affiliation(s)
- Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lingming Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ying Qin
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,*Correspondence: Xuejiao Gao, ; Hongqiang Sun,
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,*Correspondence: Xuejiao Gao, ; Hongqiang Sun,
| |
Collapse
|
21
|
Poulsen CS, Nygaard N, Constancias F, Stankevic E, Kern T, Witte DR, Vistisen D, Grarup N, Pedersen OB, Belstrøm D, Hansen T. Association of general health and lifestyle factors with the salivary microbiota - Lessons learned from the ADDITION-PRO cohort. Front Cell Infect Microbiol 2022; 12:1055117. [PMID: 36467723 PMCID: PMC9709502 DOI: 10.3389/fcimb.2022.1055117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Previous research indicates that the salivary microbiota may be a biomarker of oral as well as systemic disease. However, clarifying the potential bias from general health status and lifestyle-associated factors is a prerequisite of using the salivary microbiota for screening. MATERIALS & METHODS ADDDITION-PRO is a nationwide Danish cohort, nested within the Danish arm of the Anglo-Danish-Dutch Study of Intensive treatment in People with Screen-Detected Diabetes in Primary Care. Saliva samples from n=746 individuals from the ADDITION-PRO cohort were characterized using 16s rRNA sequencing. Alpha- and beta diversity as well as relative abundance of genera was examined in relation to general health and lifestyle-associated variables. Permutational multivariate analysis of variance (PERMANOVA) was performed on individual variables and all variables together. Classification models were created using sparse partial-least squares discriminant analysis (sPLSDA) for variables that showed statistically significant differences based on PERMANOVA analysis (p < 0.05). RESULTS Glycemic status, hemoglobin-A1c (HbA1c) level, sex, smoking and weekly alcohol intake were found to be significantly associated with salivary microbial composition (individual variables PERMANOVA, p < 0.05). Collectively, these variables were associated with approximately 5.8% of the observed differences in the composition of the salivary microbiota. Smoking status was associated with 3.3% of observed difference, and smoking could be detected with good accuracy based on salivary microbial composition (AUC 0.95, correct classification rate 79.6%). CONCLUSIONS Glycemic status, HbA1c level, sex, smoking and weekly alcohol intake were significantly associated with the composition of the salivary microbiota. Despite smoking only being associated with 3.3% of the difference in overall salivary microbial composition, it was possible to create a model for detection of smoking status with a high correct classification rate. However, the lack of information on the oral health status of participants serves as a limitation in the present study. Further studies in other cohorts are needed to validate the external validity of these findings.
Collapse
Affiliation(s)
- Casper Sahl Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nikoline Nygaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Institute of Odontology, Section of Oral Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Florentin Constancias
- Swiss Federal Institute of Technology in Zürich, Department of Health Sciences and Technology, Zürich, Switzerland
| | - Evelina Stankevic
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Daniel R. Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Dorte Vistisen
- Steno Diabetes Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Oluf Borbye Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, Gentofte, Denmark
| | - Daniel Belstrøm
- Institute of Odontology, Section of Oral Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
22
|
The Effects of Alcohol Drinking on Oral Microbiota in the Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095729. [PMID: 35565124 PMCID: PMC9103016 DOI: 10.3390/ijerph19095729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
Abstract
The dysbiosis of oral microbiota is linked to numerous diseases and is associated with personal lifestyles, such as alcohol drinking. However, there is inadequate data to study the effect of alcohol drinking on oral microbiota from the Chinese population. Here, we profiled the oral microbiota of 150 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The results showed that drinkers had significantly higher alpha diversity than non-drinkers. A significant difference in overall microbiota composition was observed between non-drinkers and drinkers. Additionally, using DESeq analysis, we found genus Prevotella and Moryella, and species Prevotella melaninogenica and Prevotella tannerae were significantly enriched in drinkers; meanwhile, the genus Lautropia, Haemophilus and Porphyromonas, and species Haemophilus parainfluenzae were significantly depleted in drinkers. PICRUSt analysis showed that significantly different genera were mainly related to metabolism pathways. The oxygen-independent pathways, including galactose, fructose and mannose metabolism pathways, were enriched in drinkers and positively associated with genera enriched in drinkers; while the pyruvate metabolism pathway, an aerobic metabolism pathway, was decreased in drinkers and negatively associated with genera enriched in drinkers. Our results suggested that alcohol drinking may affect health by altering oral microbial composition and potentially affecting microbial functional pathways. These findings may have implications for better understanding the potential role those oral bacteria play in alcohol-related diseases.
Collapse
|