1
|
Allegretta RA, Rovelli K, Balconi M. The Role of Emotion Regulation and Awareness in Psychosocial Stress: An EEG-Psychometric Correlational Study. Healthcare (Basel) 2024; 12:1491. [PMID: 39120194 PMCID: PMC11312088 DOI: 10.3390/healthcare12151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND In stressful situations, to overcome unpleasant emotions, individuals try to manage stress through emotion regulation strategies such as cognitive reappraisal, interoception, and mindfulness. METHOD 26 healthy adults underwent a modified version of the Trier Social Stress Test (named the Social Stress Test, SST) while their electrophysiological (EEG) activity was monitored. Participants also completed self-report questionnaires prior to this, including the Five-Facet Mindfulness Questionnaire (FFMQ), Multidimensional Assessment of Interoceptive Awareness (MAIA), Emotional Regulation of Others and Self (EROS), and the Interpersonal Reactivity Index (IRI). Three brain regions of interest (ROIs) were considered in the EEG data processing: frontal, temporo-central, and parieto-occipital. Correlational analyses were performed between psychometric scales and EEG band power spectral values for each ROI. RESULTS The results showed positive correlations between interoceptive awareness, mindfulness, and high-frequency EEG bands (beta, alpha, gamma) over frontal ROI, indicating enhanced cognitive processing and emotional regulation. Conversely, emotion regulation and empathy measures correlated positively with low-frequency EEG bands (delta, theta), associated with improved social cognition and top-down regulatory processes. CONCLUSIONS These findings suggest that EEG correlations of the stress response are connected to emotion regulation mechanisms, emphasizing the importance of body state awareness in managing stress and emotions for overall well-being and quality of life.
Collapse
Affiliation(s)
- Roberta A. Allegretta
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (K.R.); (M.B.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
2
|
Crivelli D, Balconi M. From physical to digital: A theoretical-methodological primer on designing hyperscanning investigations to explore remote exchanges. Soc Neurosci 2024:1-9. [PMID: 39043222 DOI: 10.1080/17470919.2024.2380725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/25/2024]
Abstract
As individuals increasingly engage in social interactions through digital mediums, understanding the neuroscientific underpinnings of such exchanges becomes a critical challenge and a valuable opportunity. In line with a second-person neuroscience approach, understanding the forms of interpersonal syntonisation that occur during digital interactions is pivotal for grasping the mechanisms underlying successful collaboration in virtual spaces. The hyperscanning paradigm, involving the simultaneous monitoring of the brains and bodies of multiple interacting individuals, seems to be a powerful tool for unravelling the neural correlates of interpersonal syntonisation in social exchanges. We posit that such approach can now open new windows on interacting brains' responses even to digitally-conveyed social cues, offering insights into how social information is processed in the absence of traditional face-to-face settings. Yet, such paradigm shift raises challenging methodological questions, which should be answered properly to conduct significant and informative hyperscanning investigations. Here, we provide an introduction to core methodological issues dedicated to novices approaching the design of hyperscanning investigations of remote exchanges in natural settings, focusing on the selection of neuroscientific devices, synchronization of data streams, and data analysis approaches. Finally, a methodological checklist for devising robust hyperscanning studies on digital interactions is presented.
Collapse
Affiliation(s)
- Davide Crivelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
3
|
Crivelli D, Balconi M. Shared emotions, interpersonal syntonization, and group decision-making: a multi-agent perspective. Front Neurosci 2023; 17:1251855. [PMID: 38099206 PMCID: PMC10720320 DOI: 10.3389/fnins.2023.1251855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Davide Crivelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
4
|
Hartman ME. Prefrontal NIRS signal is unaffected by forehead Doppler flux during incremental cycling exercise. Clin Physiol Funct Imaging 2023; 43:393-403. [PMID: 37243413 DOI: 10.1111/cpf.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Near-infrared spectroscopy (NIRS) is used to measure tissue concentrations of oxyhemoglobin (O2 Hb) and deoxyhemoglobin (HHb). In the context of exercise, NIRS confers a higher signal-to-noise ratio than other neuroimaging techniques. However, part of the signal may be influenced by thermoregulatory hyperemia in the superficial cutaneous capillaries of the forehead. The degree to which NIRS signals during exercise reflect cerebral or extracerebral hemodynamic changes is a continuing source of controversy. However, the influence of skin blood flow may be attenuated depending on the NIRS technique (e.g., frequency domain machines with maximal optode separation distances >3.5 cm). The purpose of this study was to compare the changes in forehead skin blood flow and cerebral hemoglobin concentration during incremental exercise versus direct vasodilation of the forehead skin induced by gradual local heating. Thirty participants (12 females, 18 males; age: 20.8 ± 3.2 years; body mass index: 23.8 ± 3.7 kg·m-2 ) participated in the study. Forehead skin blood flow was quantified laser Doppler flux and absolute concentrations of cerebral O2 Hb and HHb were measured by NIRS. Local heating significantly increased the Doppler flux signal across time and these changes were significantly correlated with skin temperature. During incremental exercise, skin temperature, Doppler flux, O2 Hb and HHb increased however, the only significant change that was consistently correlated with Doppler flux was skin temperature. Therefore, a significant change in forehead skin blood flow may not significantly the NIRS hemoglobin data, depending on the type of NIRS device used.
Collapse
Affiliation(s)
- Mark E Hartman
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Balconi M, Sansone M, Acconito C. Implicit IAT Measures and Neurophysiological fNIRS Markers in Response to High-Engagement Advertising. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094332. [PMID: 37177542 PMCID: PMC10181564 DOI: 10.3390/s23094332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Self-report measures partially explain consumers' purchasing choices, which are inextricably linked to cognitive, affective processes and implicit drives. These aspects, which occur outside of awareness and tacitly affect the way consumers make decisions, could be explored by exploiting neuroscientific technology. The study investigates implicit behavioural and neurovascular responses to emotionally arousing and high-engagement advertisements (COVID-19 content). High-engagement advertisements and control stimuli were shown in two experimental sessions that were counterbalanced across participants. During each session, hemodynamic variations were recorded with functional Near-Infrared Spectroscopy (fNIRS) of the prefrontal cortex (PFC), a neurophysiological marker for emotional processing. The implicit association task (IAT) was administered to investigate the implicit attitude. An increase in the concentration of oxygenated haemoglobin (O2Hb) was found for the high-engagement advertising when this category of stimuli was seen first. Specular results were found for deoxygenated haemoglobin (HHb) data. The IAT reported higher values for highly engaging stimuli. Increased activity within the PFC suggests that highly engaging content may be effective in generating emotional arousal and increasing attention when presented before other stimuli, which is consistent with the higher IAT scores, indicating more favourable implicit attitudes. This evidence suggests that the effectiveness of highly engaging advertising-related messages may be constrained by the order of advertisement administration.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Martina Sansone
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Carlotta Acconito
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| |
Collapse
|
6
|
Akila V, Johnvictor AC. Functional near infrared spectroscopy for brain functional connectivity analysis: A graph theoretic approach. Heliyon 2023; 9:e15002. [PMID: 37082646 PMCID: PMC10112026 DOI: 10.1016/j.heliyon.2023.e15002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Background Functional Near-Infrared Spectroscopy is an optical brain monitoring technique which uses NIRS to perform functional neuroimaging. It uses near-infrared light for measuring brain activity and to estimate the cortical hemodynamic activity in the brain due to motor activity. Functional NIRS measures the changes in oxygen levels in oxygenated and deoxygenated hemoglobin by optical absorption. One of the main challenges in the analysis of fNIRS signals is the signal degradation due to the interference from noise and artifacts from multiple sources. Methods In this context, this research aims to analyze the connectivity between different regions of the brain using graph theory and hence the geometrical association of brain networks in terms of functional parameters. In this study, the impact of two noise removal processes (CBSI and TDDR), along with two types of correlation fNIRS such as Pearson's Correlation (PC), and Cross Correlation (CC) and various whole-brain network architectures on the reproducibility of graph measurements for individual participants has been carefully examined for different densities ranging from 5% to 50%.The graph measures' repeatability at the individual level was studied using the test-retest variability (TRT). Results The test-retest variability for global measurements in binary networks was substantially large at low densities, regardless of the noise removal method or the kind of correlation. Very low test -reset values are observed for weighted networks and great reproducibility for measures of the entire graph. When comparing the test-retest values for various methods, the kind of correlation, the absolute value of the correlation, and the weight calculation method on the raw correlation value all had significant major effects. Conclusion Based on a weighted network with the absolute cross correlation functioning as the weight, this study revealed that normalized global graph measurements were reliable. The node definition techniques that were utilized to remove noise were not essential for the normalized graph measures to be reproducible.
Collapse
|
7
|
Angioletti L, Balconi M. Delta-Alpha EEG pattern reflects the interoceptive focus effect on interpersonal motor synchronization. FRONTIERS IN NEUROERGONOMICS 2022; 3:1012810. [PMID: 38235477 PMCID: PMC10790895 DOI: 10.3389/fnrgo.2022.1012810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2024]
Abstract
Little is known about how the modulation of the interoceptive focus impacts the neural correlates of high-level social processes, such as synchronization mechanisms. Therefore, the current study aims to explore the intraindividual electrophysiological (EEG) patterns induced by the interoceptive focus on breath when performing cognitive and motor tasks requiring interpersonal synchronization. A sample of 28 healthy caucasian adults was recruited and asked to perform two tasks requiring interpersonal synchronization during two distinct conditions: while focusing on the breath or without the focus on the breath. EEG frequency bands (delta, theta, alpha, and beta band) were recorded from the frontal, temporo-central, and parieto-occipital regions of interest. Significant results were observed for the delta and alpha bands. Notably, higher mean delta values and alpha desynchronization were observed in the temporo-central area during the focus on the breath condition when performing the motor compared to the cognitive synchronization task. Taken together these results could be interpreted considering the functional meaning of delta and alpha band in relation to motor synchronization. Indeed, motor delta oscillations shape the dynamics of motor behaviors and motor neural processes, while alpha band attenuation was previously observed during generation, observation, and imagery of movement and is considered to reflect cortical motor activity and action-perception coupling. Overall, the research shows that an EEG delta-alpha pattern emerges in the temporo-central areas at the intra-individual level, indicating the attention to visceral signals, particularly during interpersonal motor synchrony.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
8
|
Angioletti L, Balconi M. EEG brain oscillations are modulated by interoception in response to a synchronized motor vs. cognitive task. Front Neuroanat 2022; 16:991522. [PMID: 36213612 PMCID: PMC9540215 DOI: 10.3389/fnana.2022.991522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
So far, little is known about how conscious attention to internal body signals, that is, interoception, affects the synchronization with another person, a necessary or required social process that promotes affiliations and cooperation during daily joint social interactions. The effect of explicit interoceptive attentiveness (IA) modulation, conceived as the focus on the breath for a given time interval, on electrophysiological (EEG) correlates during an interpersonal motor task compared with a cognitive synchronization task was investigated in this study. A total of 28 healthy participants performed a motor and a cognitive synchronization task during the focus and no-focus breath conditions. During the tasks, frequency bands (delta, theta, alpha, and beta bands) from the frontal, temporo-central, and parieto-occipital regions of interest (ROIs) were acquired. According to the results, significantly higher delta and theta power were found in the focus condition in the frontal ROI during the execution of the motor than the cognitive synchronization task. Moreover, in the same experimental condition, delta and beta band power increased in the temporo-central ROI. The current study suggested two main patterns of frequency band modulation during the execution of a motor compared with the cognitive synchronization task while a person is focusing the attention on one's breath. This study can be considered as the first attempt to classify the different effects of interoceptive manipulation on motor and cognitive synchronization tasks using neurophysiological measures.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
9
|
Yorgancigil E, Yildirim F, Urgen BA, Erdogan SB. An Exploratory Analysis of the Neural Correlates of Human-Robot Interactions With Functional Near Infrared Spectroscopy. Front Hum Neurosci 2022; 16:883905. [PMID: 35923750 PMCID: PMC9339604 DOI: 10.3389/fnhum.2022.883905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) has been gaining increasing interest as a practical mobile functional brain imaging technology for understanding the neural correlates of social cognition and emotional processing in the human prefrontal cortex (PFC). Considering the cognitive complexity of human-robot interactions, the aim of this study was to explore the neural correlates of emotional processing of congruent and incongruent pairs of human and robot audio-visual stimuli in the human PFC with fNIRS methodology. Hemodynamic responses from the PFC region of 29 subjects were recorded with fNIRS during an experimental paradigm which consisted of auditory and visual presentation of human and robot stimuli. Distinct neural responses to human and robot stimuli were detected at the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) regions. Presentation of robot voice elicited significantly less hemodynamic response than presentation of human voice in a left OFC channel. Meanwhile, processing of human faces elicited significantly higher hemodynamic activity when compared to processing of robot faces in two left DLPFC channels and a left OFC channel. Significant correlation between the hemodynamic and behavioral responses for the face-voice mismatch effect was found in the left OFC. Our results highlight the potential of fNIRS for unraveling the neural processing of human and robot audio-visual stimuli, which might enable optimization of social robot designs and contribute to elucidation of the neural processing of human and robot stimuli in the PFC in naturalistic conditions.
Collapse
Affiliation(s)
- Emre Yorgancigil
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- *Correspondence: Emre Yorgancigil
| | - Funda Yildirim
- Cognitive Science Master's Program, Yeditepe University, Istanbul, Turkey
- Department of Computer Engineering, Yeditepe University, Istanbul, Turkey
| | - Burcu A. Urgen
- Department of Psychology, Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
- Aysel Sabuncu Brain Research Center, National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
| | - Sinem Burcu Erdogan
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
10
|
Angioletti L, Balconi M. The Increasing Effect of Interoception on Brain Frontal Responsiveness During a Socially Framed Motor Synchronization Task. Front Hum Neurosci 2022; 16:834619. [PMID: 35669205 PMCID: PMC9163315 DOI: 10.3389/fnhum.2022.834619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
This research explored the effect of explicit Interoceptive Attentiveness (IA) manipulation on hemodynamic brain correlates during a task involving interpersonal motor coordination framed with a social goal. Participants performed a task requiring interpersonal movement synchrony with and without a social framing in both explicit IA and control conditions. Functional Near-Infrared Spectroscopy (fNIRS) was used to record oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) changes during the tasks. According to the results, the prefrontal cortex (PFC), which is involved in high-order social cognition and interpersonal relations processing, was more responsive when inducing the explicit focus (IA) on the breath during the socially framed motor task requiring synchronization, as indicated by increased O2Hb. In the absence of a broader social frame, this effect was not significant for the motor task. Overall, the present study suggests that when a joint task is performed and the individual focuses on his/her physiological body reactions, the brain hemodynamic correlates are “boosted” in neuroanatomical regions that support sustained attention, reorientation of attention, social responsiveness, and synchronization. Furthermore, the PFC responds significantly more as the person consciously focuses on physiological interoceptive correlates and performs a motor task requiring synchronization, particularly when the task is socially framed.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- *Correspondence: Laura Angioletti,
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
11
|
ADV at the Time of COVID-19 Brain Effect between Emotional Engagement and Purchase Intention. Brain Sci 2022; 12:brainsci12050593. [PMID: 35624980 PMCID: PMC9139764 DOI: 10.3390/brainsci12050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
In pandemic times, taking advantage of COVID-19-elicited emotions in commercials has been a popular tactic employed by corporations to build successful consumer engagement and, hopefully, increase sales. The present study investigates whether COVID-19-related emotional communication affects the consumer’s emotional response and the approach/avoidance motivation toward the brand—measured as a function of brain hemodynamic changes—as well as the purchase intentions. The functional Near-Infrared Spectroscopy (fNIRS) was employed to record neural correlates from the prefrontal cortex while the experimental and control groups were observing respectively COVID-19-related and unrelated advertisements (ads). The hemodynamic patterns suggest that COVID-19-related ads may promote deeper emotional elaboration, shifting consumers’ attention from the semantic meaning to the affective features and perhaps supporting a more favorable brand evaluation. Conversely, purchase intentions were only related to the pre-existing level of brand engagement. The findings suggest that leveraging the negative emotional potential of COVID-19 may not shift the explicit purchase intentions but could nonetheless boost emotional engagement, benefitting the final evaluation of the brand at an implicit level.
Collapse
|
12
|
Zapała D, Augustynowicz P, Tokovarov M. Recognition of Attentional States in VR Environment: An fNIRS Study. SENSORS 2022; 22:s22093133. [PMID: 35590823 PMCID: PMC9104032 DOI: 10.3390/s22093133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
An improvement in ecological validity is one of the significant challenges for 21st-century neuroscience. At the same time, the study of neurocognitive processes in real-life situations requires good control of all variables relevant to the results. One possible solution that combines the capability of creating realistic experimental scenarios with adequate control of the test environment is virtual reality. Our goal was to develop an integrative research workspace involving a CW-fNIRS and head-mounted-display (HMD) technology dedicated to offline and online cognitive experiments. We designed an experimental study in a repeated-measures model on a group of BCI-naïve participants to verify our assumptions. The procedure included a 3D environment-adapted variant of the classic n-back task (2-back version). Tasks were divided into offline (calibration) and online (feedback) sessions. In both sessions, the signal was recorded during the cognitive task for within-group comparisons of changes in oxy-Hb concentration in the regions of interest (the dorsolateral prefrontal cortex-DLPFC and middle frontal gyrus-MFG). In the online session, the recorded signal changes were translated into real-time feedback. We hypothesized that it would be possible to obtain significantly higher than the level-of-chance threshold classification accuracy for the enhanced attention engagement (2-back task) vs. relaxed state in both conditions. Additionally, we measured participants' subjective experiences of the BCI control in terms of satisfaction. Our results confirmed hypotheses regarding the offline condition. In accordance with the hypotheses, combining fNIRS and HMD technologies enables the effective transfer of experimental cognitive procedures to a controlled VR environment. This opens the new possibility of creating more ecologically valid studies and training procedures.
Collapse
Affiliation(s)
- Dariusz Zapała
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
- Cortivision sp. z o.o., 20-803 Lublin, Poland
- Correspondence: ; Tel.: +48-668-548-184
| | - Paweł Augustynowicz
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
- Cortivision sp. z o.o., 20-803 Lublin, Poland
| | - Mikhail Tokovarov
- Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| |
Collapse
|
13
|
Cassioli F, Balconi M. The Complexity of Remote Learning: A Neuroergonomical Discussion. Front Neurorobot 2022; 16:842151. [PMID: 35496900 PMCID: PMC9043128 DOI: 10.3389/fnbot.2022.842151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Federico Cassioli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
14
|
Balconi M, Sansone M, Angioletti L. Consumers in the Face of COVID-19-Related Advertising: Threat or Boost Effect? Front Psychol 2022; 13:834426. [PMID: 35345640 PMCID: PMC8957070 DOI: 10.3389/fpsyg.2022.834426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has prompted the production of a vast amount of COVID-19-themed brand commercials, in an attempt to exploit the salience of the topic to reach more effectively the consumers. However, the literature has produced conflicting findings of the effectiveness of negative emotional contents in advertisings. The present study aims at exploring the effect of COVID-19-related contents on the hemodynamic brain correlates of the consumer approach or avoidance motivation. Twenty Italian participants were randomly assigned to two different groups that watched COVID-19-related or non-COVID-19-related commercials. The hemodynamic response [oxygenated (O2Hb) and deoxygenated hemoglobin modulations] within the left and right prefrontal cortices (PFC) was monitored with Functional Near-Infrared Spectroscopy (fNIRS) while brand commercials were presented, as the prefrontal lateralization was shown to be indicative of the attitude toward the brand and of the approach-avoidance motivation. First, the findings showed that the COVID-19-related contents were able to prompt emotional processing within the PFC to a higher extent compared to contents non-related to COVID-19. Moreover, the single-channel analysis revealed increased O2Hb activity of the left dorsolateral PFC compared to the left pars triangularis Broca’s area in the group of participants that watched the COVID-19-related commercials, suggesting that the commercials may have driven participants to dedicate more attention toward the processing of the emotional components compared to the semantic meaning conveyed by the ad. To conclude, despite expressing unpleasant emotions, commercials referring to the highly emotional pandemic experience may benefit the advertising efficacy, increasing the capability to reach customers.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Martina Sansone
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
15
|
Angioletti L, Tormen F, Balconi M. Judgment and Embodied Cognition of Lawyers. Moral Decision-Making and Interoceptive Physiology in the Legal Field. Front Psychol 2022; 13:853342. [PMID: 35401313 PMCID: PMC8987697 DOI: 10.3389/fpsyg.2022.853342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Past research showed that the ability to focus on one’s internal states (e.g., interoceptive ability) positively correlates with the self-regulation of behavior in situations that are accompanied by somatic and/or physiological changes, such as emotions, physical workload, and decision-making. The analysis of moral oriented decision-making can be the first step for better understanding the legal reasoning carried on by the main players in the field, as lawyers are. For this reason, this study investigated the influence of the decision context and interoceptive manipulation on the moral decision-making process in the legal field gathering the responses of two groups of lawyers. A total of 20 lawyers were randomly divided into an experimental group (EXP), which was explicitly required to focus the attention on its interoceptive correlates, and a control group (CON), which only received the general instruction to perform the task. Both groups underwent a modified version of the Ultimatum Game (UG), where are presented three different moral conditions (professional, company, and social) and three different offers (fair, unfair, and equal). Results highlighted a significant increase of Acceptance Rate (AR) in those offers that should be considered more equal than fair or unfair ones, associated with a general increase of Reaction Times (RTs) in the equal offers. Furthermore, the interoceptive manipulation oriented the Lawyers toward a more self-centered decision. This study shows how individual, situational, contextual, and interoceptive factors may influence the moral decision-making of lawyers. Future research in the so-called Neurolaw field is needed to replicate and expand current findings.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- *Correspondence: Laura Angioletti,
| | - Federico Tormen
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
16
|
Gola G, Angioletti L, Cassioli F, Balconi M. The Teaching Brain: Beyond the Science of Teaching and Educational Neuroscience. Front Psychol 2022; 13:823832. [PMID: 35356321 PMCID: PMC8959866 DOI: 10.3389/fpsyg.2022.823832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giancarlo Gola
- Department of Education and Learning, University of Applied Sciences and Arts of Southern Switzerland, Locarno, Switzerland
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Federico Cassioli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
17
|
Interoceptive Attentiveness Induces Significantly More PFC Activation during a Synchronized Linguistic Task Compared to a Motor Task as Revealed by Functional Near-Infrared Spectroscopy. Brain Sci 2022; 12:brainsci12030301. [PMID: 35326258 PMCID: PMC8946073 DOI: 10.3390/brainsci12030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is little understanding of how interoceptive attentiveness (IA) affects brain responses during synchronized cognitive or motor tasks. This pilot study explored the effect of explicit IA manipulation on hemodynamic correlates of simple cognitive tasks implying linguistic or motor synchronization. Eighteen healthy participants completed two linguistic and motor synchronization tasks during explicit IA and control conditions while oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin variations were recorded by functional Near-Infrared Spectroscopy (fNIRS). The findings suggested that the brain regions associated with sustained attention, such as the right prefrontal cortex (PFC), were more involved when an explicit focus on the breath was induced during the cognitive linguistic task requiring synchronization with a partner, as indicated by increased O2Hb. Interestingly, this effect was not significant for the motor task. In conclusion, for the first time, this pilot research found increased activity in neuroanatomical regions that promote sustained attention, attention reorientation, and synchronization when a joint task is carried out and the person is focusing on their physiological body reactions. Moreover, the results suggested that the benefits of conscious concentration on physiological interoceptive correlates while executing a task demanding synchronization, particularly verbal alignment, may be related to the right PFC.
Collapse
|
18
|
Angioletti L, Balconi M. Interoceptive attentiveness and autonomic reactivity in pain observation. Somatosens Mot Res 2021; 39:81-89. [PMID: 34847833 DOI: 10.1080/08990220.2021.2005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aim: This study explores interoceptive attentiveness (IA) influence on autonomic reactivity related to pain and self-regulation during situations evoking physiological mirroring for pain.Methods: 20 participants observed face/hand, painful/non-painful stimuli in an individual versus social condition while the autonomic response was measured [Electrodermal activity, Pulse Volume Amplitude (PVA), and Heart Rate (HR)] was measured. The sample was divided into experimental (EXP) subjects, required to focus on their interoceptive correlates while observing the stimuli, and the control (CNT) group. HR inter-beat interval (IBI), and HR Variability (HRV) were calculated.Results: Results showed high accuracy to painful and non-painful stimuli recognition. Regarding autonomic indices, higher PVA values were detected for hand painful versus non-painful stimuli, whereas for the EXP group a significant activation of IBI was found for face painful vs non-painful stimuli.Conclusion: In the context of observation of pain in others, PVA and IBI could be respectively markers of mirroring mechanisms and autonomic self-regulation mediated by IA.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
19
|
Balconi M, Sansone M. Neuroscience and Consumer Behavior: Where to Now? Front Psychol 2021; 12:705850. [PMID: 34290656 PMCID: PMC8287207 DOI: 10.3389/fpsyg.2021.705850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Martina Sansone
- International Research Center for Cognitive Applied Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
20
|
Balconi M, Fronda G. How to Induce and Recognize Facial Expression of Emotions by Using Past Emotional Memories: A Multimodal Neuroscientific Algorithm. Front Psychol 2021; 12:619590. [PMID: 34040557 PMCID: PMC8141597 DOI: 10.3389/fpsyg.2021.619590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giulia Fronda
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Catholic University of the Sacred Heart, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
21
|
The Function of Color and Structure Based on EEG Features in Landscape Recognition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094866. [PMID: 34063616 PMCID: PMC8125265 DOI: 10.3390/ijerph18094866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022]
Abstract
Both color and structure make important contributions to human visual perception, as well as the evaluation of landscape quality and landscape aesthetics. The EEG equipment liveamp32 was used to record the EEG signals of humans when viewing landscape images, structure images with filtered color, and color images with a filtered structure. The results show that the SVM classifier was the most suitable classifier for landscape classification based on EEG features. The classification accuracy of the landscape picture recognition was up to 98.3% when using beta waves, while the accuracy of the color recognition was 97.5%, and that of the structure recognition was 93.9% when using gamma waves. Secondly, color and structure played a major role in determining the alpha and gamma wave responses, respectively, for all the landscape types, including forest, desert, and water. Furthermore, structure only played a decisive role in forest, while color played a major role in desert and water when using beta waves. Lastly, statistically significant differences between landscape groups and scenario groups with regard to alpha, beta, and gamma rhythms in brain waves were confirmed. The reasonable usage and layout of structure and color will have a very important guiding value for landscape aesthetics in future landscape design and landscape planning.
Collapse
|
22
|
Intra-Brain Connectivity vs. Inter-Brain Connectivity in Gestures Reproduction: What Relationship? Brain Sci 2021; 11:brainsci11050577. [PMID: 33947101 PMCID: PMC8145238 DOI: 10.3390/brainsci11050577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the neurosciences have become interested in the investigation of neural responses associated with the use of gestures. This study focuses on the relationship between the intra-brain and inter-brain connectivity mechanisms underlying the execution of different categories of gestures (positive and negative affective, social, and informative) characterizing non-verbal interactions between thirteen couples of subjects, each composed of an encoder and a decoder. The study results underline a similar modulation of intra- and inter-brain connectivity for alpha, delta, and theta frequency bands in specific areas (frontal or posterior regions) depending on the type of gesture. Moreover, taking into account the gestures' valence (positive or negative), a similar modulation of intra- and inter-brain connectivity in the left and right sides was observed. This study showed congruence in the intra-brain and inter-brain connectivity trend during the execution of different gestures, underlining how non-verbal exchanges might be characterized by intra-brain phase alignment and implicit mechanisms of mirroring and synchronization between the two individuals involved in the social exchange.
Collapse
|
23
|
Vanutelli ME, Meroni F, Fronda G, Balconi M, Lucchiari C. Gender Differences and Unfairness Processing during Economic and Moral Decision-Making: A fNIRS Study. Brain Sci 2020; 10:E647. [PMID: 32957723 PMCID: PMC7564687 DOI: 10.3390/brainsci10090647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Decisional conflicts have been investigated with social decision-making tasks, which represent good models to elicit social and emotional dynamics, including fairness perception. To explore these issues, we created two modified versions of the UG framed within an economic vs. a moral context that included two kinds of unfair offers: advantageous (upside, U) or disadvantageous (downside, D) from the responder's perspective, and vice-versa for the proponent. The hemodynamic activity of 36 participants, 20 females and 16 males, was continuously recorded with fNIRS to investigate the presence of general or specific circuits between the different experimental conditions. Results showed that disadvantageous offers (D) are associated with an increased widespread cortical activation. Furthermore, we found that advantageous moral choices at the expense of others (U) were related to the activation of the right prefrontal cortex. Finally, we found gender-related differences in brain activations in the different frameworks. In particular, the DLPFC was recruited by females during the economic task, and by males during the moral frame. In conclusion, the present study confirmed and expanded previous data about the role of the prefrontal cortices in decision-making, suggesting the need for further studies to understand better the different prefrontal networks serving moral and economic decisions also considering gender-related differences.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Philosophy, Università degli Studi di Milano, 20122 Milan, Italy; (F.M.); (C.L.)
- Research Unit in Social and Affective Neuroscience, Catholic University of Milan, 20122 Milan, Italy; (G.F.); (M.B.)
| | - Francesca Meroni
- Department of Philosophy, Università degli Studi di Milano, 20122 Milan, Italy; (F.M.); (C.L.)
| | - Giulia Fronda
- Research Unit in Social and Affective Neuroscience, Catholic University of Milan, 20122 Milan, Italy; (G.F.); (M.B.)
- Department of Psychology, Catholic University of Milan, 20122 Milan, Italy
| | - Michela Balconi
- Research Unit in Social and Affective Neuroscience, Catholic University of Milan, 20122 Milan, Italy; (G.F.); (M.B.)
- Department of Psychology, Catholic University of Milan, 20122 Milan, Italy
| | - Claudio Lucchiari
- Department of Philosophy, Università degli Studi di Milano, 20122 Milan, Italy; (F.M.); (C.L.)
| |
Collapse
|
24
|
Fronda G, Balconi M. The effect of interbrain synchronization in gesture observation: A fNIRS study. Brain Behav 2020; 10:e01663. [PMID: 32469153 PMCID: PMC7375069 DOI: 10.1002/brb3.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Gestures characterize individuals' nonverbal communicative exchanges, taking on different functions. Several types of research in the neuroscientific field have been interested in the investigation of the neural correlates underlying the observation and implementation of different gestures categories. In particular, different studies have focused on the neural correlates underlying gestures observation, emphasizing the presence of mirroring mechanisms in specific brain areas, which appear to be involved in gesture observation and planning mechanisms. MATERIALS AND METHODS Specifically, the present study aimed to investigate the neural mechanisms, through the use of functional Near-Infrared Spectroscopy (fNIRS), underlying the observation of affective, social, and informative gestures with positive and negative valence in individuals' dyads composed by encoder and decoder. The variations of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations of both individuals were collected simultaneously through the use of hyperscanning paradigm, allowing the recording of brain responsiveness and interbrain connectivity. RESULTS The results showed a different brain activation and an increase of interbrain connectivity according to the type of gestures observed, with a significant increase of O2Hb brain responsiveness and interbrain connectivity and a decrease of HHb brain responsiveness for affective gestures in the dorsolateral prefrontal cortex (DLPFC) and for social gestures in the superior frontal gyrus (SFG). Furthermore, concerning the valence of the observed gestures, an increase of O2Hb brain activity and interbrain connectivity was observed in the left DLPFC for positive affective gestures compared to negative ones. CONCLUSION In conclusion, the present study showed different brain responses underlying the observation of different types of positive and negative gestures. Moreover, interbrain connectivity calculation allowed us to underline the presence of mirroring mechanisms involved in gesture-specific frontal regions during gestures observation and action planning.
Collapse
Affiliation(s)
- Giulia Fronda
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy
| | - Michela Balconi
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy
| |
Collapse
|
25
|
Balconi M, Fronda G, Bartolo A. Affective, Social, and Informative Gestures Reproduction in Human Interaction: Hyperscanning and Brain Connectivity. J Mot Behav 2020; 53:296-315. [PMID: 32525458 DOI: 10.1080/00222895.2020.1774490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gestural communication characterizes daily individuals' interactions in order to share information and to modify others' behavior. Social neuroscience has investigated the neural bases which support recognizing of different gestures. The present research, through the use of the hyperscanning approach, that allows the simultaneously recording of the activity of two or more individuals involved in a joint action, aims to investigate the neural bases of gestural communication. Moreover, by using hyperscanning paradigm we explore the inter-brain connectivity between two inter-agents, the one who performed the gesture (encoder) and the one who received it (decoder), with functional Near-infrared Spectroscopy (fNIRS) during the reproduction of affective, social and informative gestures with positive and negative valence. Result showed an increase in oxygenated hemoglobin concentration (O2Hb) and inter-brain connectivity in the dorsolateral prefrontal cortex (DLPFC) for affective gestures, in the superior frontal gyrus (SFG) for social gestures and the frontal eye fields (FEF) for informative gestures, for both encoder and decoder. Furthermore, it emerged that positive gestures activate more the left DLPFC, with an increase in inter-brain connectivity in DLPFC and SFG. The present study revealed the relevant function of the type and valence of gestures in affecting intra- and inter-brain connectivity.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giulia Fronda
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Angela Bartolo
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
26
|
The "gift effect" on functional brain connectivity. Inter-brain synchronization when prosocial behavior is in action. Sci Rep 2020; 10:5394. [PMID: 32214218 PMCID: PMC7096484 DOI: 10.1038/s41598-020-62421-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
The gift exchange represents a moment that characterizes interpersonal interactions. In particular, research in psychological and neuroscientific fields aimed to observe the social function of gift exchange. Specifically, the present study aimed to investigate the effects of prosocial behavior, experienced during gift exchange, on individuals’ cognitive performance and brain activity. To this aim, behavioral performance and neural activity of 15 dyads of participants, with a consolidated friendship, were collected during the execution of an attentional cooperative task before or after a gift exchange. Individuals’ brain activity was recorded through the use of Functional Near Infrared Spectroscopy (fNIRS) in hyperscanning. Results showed an increase of perceived cooperation and cognitive performance, in terms of accuracy (ACC), after gift exchange. The increase of interpersonal tuning and cooperation was also shown by neural activity with an increase of oxygenated hemoglobin (O2Hb) intra-brain and inter-brain connectivity in the dorsolateral prefrontal cortex (DLPFC) following the gift exchange. Moreover, from ConIndex analysis emerged an increase of inter-brain connectivity compared to intra-brain in DLPFC area. The present study, therefore, highlights how prosocial behavior can have positive effects on cognitive performance improvement and interpersonal relationships and neural coordination strengthen, increasing intra and inter-brain connectivity mechanisms.
Collapse
|
27
|
Balconi M, Fronda G, Vanutelli ME. Donate or receive? Social hyperscanning application with fNIRS. CURRENT PSYCHOLOGY 2019. [DOI: 10.1007/s12144-019-00247-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Fernandez Rojas R, Liao M, Romero J, Huang X, Ou KL. Cortical Network Response to Acupuncture and the Effect of the Hegu Point: An fNIRS Study. SENSORS 2019; 19:s19020394. [PMID: 30669377 PMCID: PMC6359459 DOI: 10.3390/s19020394] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
Abstract
Acupuncture is a practice of treatment based on influencing specific points on the body by inserting needles. According to traditional Chinese medicine, the aim of acupuncture treatment for pain management is to use specific acupoints to relieve excess, activate qi (or vital energy), and improve blood circulation. In this context, the Hegu point is one of the most widely-used acupoints for this purpose, and it has been linked to having an analgesic effect. However, there exists considerable debate as to its scientific validity. In this pilot study, we aim to identify the functional connectivity related to the three main types of acupuncture manipulations and also identify an analgesic effect based on the hemodynamic response as measured by functional near-infrared spectroscopy (fNIRS). The cortical response of eleven healthy subjects was obtained using fNIRS during an acupuncture procedure. A multiscale analysis based on wavelet transform coherence was employed to assess the functional connectivity of corresponding channel pairs within the left and right somatosensory region. The wavelet analysis was focused on the very-low frequency oscillations (VLFO, 0.01–0.08 Hz) and the low frequency oscillations (LFO, 0.08–0.15 Hz). A mixed model analysis of variance was used to appraise statistical differences in the wavelet domain for the different acupuncture stimuli. The hemodynamic response after the acupuncture manipulations exhibited strong activations and distinctive cortical networks in each stimulus. The results of the statistical analysis showed significant differences (p<0.05) between the tasks in both frequency bands. These results suggest the existence of different stimuli-specific cortical networks in both frequency bands and the anaesthetic effect of the Hegu point as measured by fNIRS.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Mingyu Liao
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Julio Romero
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Xu Huang
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan.
- School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan.
- Department of Prosthodontics, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia.
- Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung 203, Taiwan.
- 3D Global Biotech Inc., New Taipei City 221, Taiwan.
| |
Collapse
|
29
|
Liu D, Liu S, Liu X, Zhang C, Li A, Jin C, Chen Y, Wang H, Zhang X. Interactive Brain Activity: Review and Progress on EEG-Based Hyperscanning in Social Interactions. Front Psychol 2018; 9:1862. [PMID: 30349495 PMCID: PMC6186988 DOI: 10.3389/fpsyg.2018.01862] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
When individuals interact with others, perceived information is transmitted among their brains. The EEG-based hyperscanning technique, which provides an approach to explore dynamic brain activities between two or more interactive individuals and their underlying neural mechanisms, has been applied to study different aspects of social interactions since 2010. Recently there has been an increase in research on EEG-based hyperscanning of social interactions. This paper summarizes the application of EEG-based hyperscanning on the dynamic brain activities during social interactions according to the experimental designs and contents, discusses the possibility of applying inter-brain synchrony to social communication systems and analyzes the contributions and the limitations of these investigations. Furthermore, this paper sheds light on some new challenges to future EEG-based hyperscanning studies and the emerging field of EEG-based hyperscanning for pursuing the broader research field of social interactions.
Collapse
Affiliation(s)
- Difei Liu
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,Department of Education, Hefei University, Hefei, China
| | - Shen Liu
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
| | - Xiaoming Liu
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,School of Foreign Languages, Anhui Jianzhu University, Hefei, China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Aosika Li
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China
| | - Chenggong Jin
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yijun Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Hangwei Wang
- CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei Medical Research Center on Alcohol Addiction, Anhui Mental Health Center, Hefei, China.,Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| |
Collapse
|
30
|
Balconi M, Crivelli D, Cortesi L. Transitive Versus Intransitive Complex Gesture Representation: A Comparison Between Execution, Observation and Imagination by fNIRS. Appl Psychophysiol Biofeedback 2018; 42:179-191. [PMID: 28589287 DOI: 10.1007/s10484-017-9365-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to examine cortical correlates of motor execution, motor observation and motor imagery of hand complex gestures, in particular by comparing meaningful gestures implying the use of an object (transitive action) or not (intransitive action). Functional near-infrared spectroscopy (fNIRS) was used to verify the presence of partial overlapping between some cortical areas involved in those different tasks. Participants were instructed to observe videos of transitive vs. intransitive gestures and then to execute or imagine them. Gesture execution was associated to greater brain activity (increased oxygenated hemoglobin levels) with respect to observation and imagination in motor areas (premotor cortex, PMC; primary sensorimotor cortex, SM1). In contrast, the posterior parietal cortex (PPC) was more relevantly involved in both execution and observation tasks compared to gesture imagination. Moreover, execution and observation of transitive gestures seemed primarily supported by similar parietal posterior areas when compared with intransitive gestures, which do not imply the presence on a object.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy. .,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy.
| | - Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| | - Livia Cortesi
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| |
Collapse
|
31
|
EEG functional connectivity and brain-to-brain coupling in failing cognitive strategies. Conscious Cogn 2018; 60:86-97. [DOI: 10.1016/j.concog.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/10/2018] [Accepted: 03/01/2018] [Indexed: 11/21/2022]
|
32
|
Predicting affective valence using cortical hemodynamic signals. Sci Rep 2018; 8:5406. [PMID: 29599437 PMCID: PMC5876393 DOI: 10.1038/s41598-018-23747-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Ascribing affective valence to stimuli or mental states is a fundamental property of human experiences. Recent neuroimaging meta-analyses favor the workspace hypothesis for the neural underpinning of valence, in which both positive and negative values are encoded by overlapping networks but are associated with different patterns of activity. In the present study, we further explored this framework using functional near-infrared spectroscopy (fNIRS) in conjunction with multivariate analyses. We monitored the fronto-temporal and occipital hemodynamic activity of 49 participants during the viewing of affective images (passive condition) and during the imagination of affectively loaded states (active condition). Multivariate decoding techniques were applied to determine whether affective valence is encoded in the cortical areas assessed. Prediction accuracies of 89.90 ± 13.84% and 85.41 ± 14.43% were observed for positive versus neutral comparisons, and of 91.53 ± 13.04% and 81.54 ± 16.05% for negative versus neutral comparisons (passive/active conditions, respectively). Our results are consistent with previous studies using other neuroimaging modalities that support the affective workspace hypothesis and the notion that valence is instantiated by the same network, regardless of whether the affective experience is passively or actively elicited.
Collapse
|
33
|
Crivelli D, Sabogal Rueda MD, Balconi M. Linguistic and motor representations of everyday complex actions: an fNIRS investigation. Brain Struct Funct 2018. [PMID: 29532151 DOI: 10.1007/s00429-018-1646-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present work aimed at exploring functional correlates of motor and linguistic representations of everyday actions, with a specific interest in potential sensorimotor activation effects induced by the use of related action sentences. While it is indeed known that observing simple motor acts (e.g., precision grasping) and listening to the sound of specific actions (e.g., walking) activate sensorimotor structures, less is known when we move to more complex behaviors and more abstract linguistic representations (e.g., verbal descriptions). Again, the potential of linguistic representations to facilitate the activation of specific sensorimotor structures during action execution or observation is yet unexplored. We then aimed at investigating hemodynamic activation patterns (via functional near-infrared spectroscopy, fNIRS) within the sensorimotor network during different tasks based on everyday activities. Twenty volunteers were asked to execute (EXE), observe (OBS), or listen (LIS) to brief verbal descriptions of transitive actions, to observe them while listening to their description (OBS-LIS), or to execute them while listening to their description (EXE-LIS). Analyses highlighted that, in the left hemisphere, hemodynamic responses were the lowest during observation of complex actions and observation coupled with listening, greater during simple listening to verbal description of actions, and maximal when participants actually executed complex actions or executed them while listening to their verbal descriptions. The present results suggest that processing verbal descriptions of actions might keep the sensorimotor network more active than simply observing them. Such first pieces of evidence hint at potential implications for novel procedures for rehabilitation of movement and action deficits.
Collapse
Affiliation(s)
- D Crivelli
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy. .,Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.
| | - M D Sabogal Rueda
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy
| | - M Balconi
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
34
|
Near-Infrared Spectroscopy Applied to Complex Systems and Human Hyperscanning Networking. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7090922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Crivelli D, Balconi M. Agentività e competenze sociali: riflessioni teoriche e implicazioni per il management. ACTA ACUST UNITED AC 2017. [DOI: 10.3280/rip2017-003006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Balconi M, Vanutelli ME. Brains in Competition: Improved Cognitive Performance and Inter-Brain Coupling by Hyperscanning Paradigm with Functional Near-Infrared Spectroscopy. Front Behav Neurosci 2017; 11:163. [PMID: 28912697 PMCID: PMC5583169 DOI: 10.3389/fnbeh.2017.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Abstract
Hyperscanning brain paradigm was applied to competitive task for couples of subjects. Functional Near-Infrared Spectroscopy (fNIRS) and cognitive performance were considered to test inter-brain and cognitive strategy similarities between subjects (14 couples) during a joint-action. We supposed increased brain-to-brain coupling and improved cognitive outcomes due to joint-action and the competition. As supposed, the direct interaction between the subjects and the observed external feedback of their performance (an experimentally induced fictitious feedback) affected the cognitive performance with decreased Error Rates (ERs), and Response Times (RTs). In addition, fNIRS measure (oxyhemoglobin, O2Hb) revealed an increased brain activity in the prefrontal cortex (PFC) in post-feedback more than pre-feedback condition. Moreover, a higher inter-brain similarity was found for the couples during the task, with higher matched brain response in post-feedback condition than pre-feedback. Finally, a significant increased prefrontal brain lateralization effect was observed for the right hemisphere. Indeed the right PFC was more responsive with similar modalities within the couple during the post-feedback condition. The joined-task and competitive context was adduced to explain these cognitive performance improving, synergic brain responsiveness within the couples and lateralization effects (negative emotions).
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of MilanMilan, Italy
| | - Maria E Vanutelli
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of MilanMilan, Italy
| |
Collapse
|
37
|
Balconi M, Cortesi L, Crivelli D. Motor planning and performance in transitive and intransitive gesture execution and imagination: Does EEG (RP) activity predict hemodynamic (fNIRS) response? Neurosci Lett 2017; 648:59-65. [DOI: 10.1016/j.neulet.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/01/2022]
|
38
|
Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation. Sci Rep 2016; 6:23083. [PMID: 26976052 PMCID: PMC4791677 DOI: 10.1038/srep23083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/01/2016] [Indexed: 11/15/2022] Open
Abstract
The brain activity, considered in its hemodynamic (optical imaging: functional Near-Infrared Spectroscopy, fNIRS) and electrophysiological components (event-related potentials, ERPs, N200) was monitored when subjects observed (visual stimulation, V) or observed and heard (visual + auditory stimulation, VU) situations which represented inter-species (human-animal) interactions, with an emotional positive (cooperative) or negative (uncooperative) content. In addition, the cortical lateralization effect (more left or right dorsolateral prefrontal cortex, DLPFC) was explored. Both ERP and fNIRS showed significant effects due to emotional interactions which were discussed at light of cross-modal integration effects. The significance of inter-species effect for the emotional behavior was considered. In addition, hemodynamic and EEG consonant results and their value as integrated measures were discussed at light of valence effect.
Collapse
|
39
|
Liu N, Mok C, Witt EE, Pradhan AH, Chen JE, Reiss AL. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. Front Hum Neurosci 2016; 10:82. [PMID: 27014019 PMCID: PMC4782164 DOI: 10.3389/fnhum.2016.00082] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.
Collapse
Affiliation(s)
- Ning Liu
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University Stanford, CA, USA
| | - Charis Mok
- Program in Human Biology, Stanford University Stanford, CA, USA
| | - Emily E Witt
- Program in Human Biology, Stanford University Stanford, CA, USA
| | - Anjali H Pradhan
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | - Jingyuan E Chen
- Department of Radiology, Stanford UniversityStanford, CA, USA; Department of Electrical Engineering, Stanford UniversityStanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford UniversityStanford, CA, USA; Department of Radiology, Stanford UniversityStanford, CA, USA
| |
Collapse
|