1
|
Anderson JR, Lam NB, Jackson JL, Dorenkott SM, Ticer T, Maldosevic E, Velez A, Camden MR, Ellis TN. Progressive Sub-MIC Exposure of Klebsiella pneumoniae 43816 to Cephalothin Induces the Evolution of Beta-Lactam Resistance without Acquisition of Beta-Lactamase Genes. Antibiotics (Basel) 2023; 12:antibiotics12050887. [PMID: 37237790 DOI: 10.3390/antibiotics12050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in soils and water supplies in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 μg/mL to 7.5 μg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 μg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increased. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS may contribute to the resistant phenotype. These data demonstrate that very low sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.
Collapse
Affiliation(s)
- Jasmine R Anderson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Nghi B Lam
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Jazmyne L Jackson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Sean M Dorenkott
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Emir Maldosevic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Amanda Velez
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Megan R Camden
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Terri N Ellis
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Yang Y, He R, Wu Y, Qin M, Chen J, Feng Y, Zhao R, Xu L, Guo X, Tian GB, Dai M, Yan B, Qin LN. Characterization of two multidrug-resistant Klebsiella pneumoniae harboring tigecycline-resistant gene tet(X4) in China. Front Microbiol 2023; 14:1130708. [PMID: 37180274 PMCID: PMC10171367 DOI: 10.3389/fmicb.2023.1130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives Tigecycline is recognized as one of the last-line antibiotics to treat serious bacterial infection caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The plasmid-borne gene tet(X4) mediates high resistance to tigecycline. However, the prevalence and genetic context of tet(X4) in K. pneumoniae from various sources are not fully understood. Here, we investigated the prevalence of tet(X4)-positive K. pneumoniae and characterized the genetic context of tet(X4)-bearing plasmids in K. pneumoniae isolates. Methods Polymerase chain reaction (PCR) was used to detect the tet(X4) gene. The transferability of the tet(X4)-carrying plasmids was tested by conjugation assays. The Galleria mellonella infection model was used to test virulence of tet(X4)-positive strains. Whole-genome sequencing and genome-wide analysis were performed to identify the antimicrobial resistance and the virulence genes, and to clarify the genetic characteristics of the tet(X4)-positive isolates. Results Among 921 samples, we identified two tet(X4)-positive K. pneumoniae strains collected from nasal swabs of two pigs (0.22%, 2/921). The two tet(X4)-positive isolates exhibited high minimum inhibitory concentrations to tigecycline (32-256 mg/L) and tetracycline (256 mg/L). The plasmids carrying the tet(X4) gene can transfer from the donor strain K. pneumoniae to the recipient strain Escherichia coli J53. Genetic analysis of the complete sequence of two tet(X4)-carrying plasmids pTKPN_3-186k-tetX4 and pTKPN_8-216k-tetX4 disclosed that the tet(X4) gene was flanked by delta ISCR2 and IS1R, which may mediate the transmission of the tet(X4) gene. Conclusion The prevalence of tet(X4)-positive K. pneumoniae among different sources was low. ISCR2 and IS1R may contribute to the horizontal transfer of tet(X4) gene. Effective measures should be taken to prevent the transmission of tet(X4)-producing K. pneumoniae in humans or animals.
Collapse
Affiliation(s)
- Yanxian Yang
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ruowen He
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiping Wu
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mingyang Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Public Health, Shandong University, Jinan, China
| | - Jieyun Chen
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Feng
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Runping Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lei Xu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xilong Guo
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo-Bao Tian
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Min Dai,
| | - Bin Yan
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
- Bin Yan,
| | - Li-Na Qin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Li-Na Qin,
| |
Collapse
|
3
|
Bulman ZP, Tan X, Chu TY, Huang Y, Rana AP, Singh N, Flowers SA, Kyono Y, Kreiswirth BN, Chen L. Ceftazidime-avibactam based combinations against carbapenemase producing Klebsiella pneumoniae harboring hypervirulence plasmids. Comput Struct Biotechnol J 2022; 20:3946-3954. [PMID: 35950190 PMCID: PMC9352398 DOI: 10.1016/j.csbj.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of carbapenem resistance and hypervirulence in Klebsiella pneumoniae is an emerging and urgent threat due to its potential to resist common antibiotics and cause life-threatening infections in healthy hosts. This study aimed to evaluate the activity of clinically relevant antibiotic regimens against carbapenem-resistant K. pneumoniae with hypervirulence plasmids and to identify pathways associated with antibiotic tolerance using transcriptomics. We studied two carbapenem-resistant K. pneumoniae isolates, CDI694 and CDI231, both harboring hypervirulence plasmids. Time-kill and dynamic one-compartment pharmacokinetic/pharmacodynamic assays were used to assess ceftazidime/avibactam-based therapies. RNAseq was performed following 48 h of antibiotic exposure. Closed genomes of CDI694 and CDI231 were obtained; each isolate harbored carbapenem-resistance and hypervirulence (containing rmpA/rmpA2 and iut genes) plasmids. Ceftazidime/avibactam-based regimens were bactericidal, though both isolates continued to grow in the presence of antibiotics despite no shifts in MIC. Transcriptomic analyses suggested that perturbations to cell respiration, carbohydrate transport, and stress-response pathways contributed to the antibiotic tolerance in CDI231. Genes associated with hypervirulence and antibiotic resistance were not strongly impacted by drug exposure except for ompW, which was significantly downregulated. Treatment of carbapenem-resistant K. pneumoniae harboring hypervirulence plasmids with ceftazidime/avibactam-based regimens may yield a tolerant population due to altered transcription of multiple key pathways.
Collapse
Affiliation(s)
- Zackery P. Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Ting-Yu Chu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P. Rana
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
4
|
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38:153. [PMID: 35788443 DOI: 10.1007/s11274-022-03343-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
In recent decades, antimicrobial resistance has been augmented as a global concern to public health owing to the global spread of multidrug-resistant strains from different ESKAPE pathogens. This alarming trend and the lack of new antibiotics with novel modes of action in the pipeline necessitate the development of non-antibiotic ways to treat illnesses caused by these isolates. In molecular biology, computational approaches have become crucial tools, particularly in one of the most challenging areas of multidrug resistance. The rapid advancements in bioinformatics have led to a plethora of computational approaches involving genomics, systems biology, and structural biology currently gaining momentum among molecular biologists since they can be useful and provide valuable information on the complex mechanisms of AMR research in ESKAPE pathogens. These computational approaches would be helpful in elucidating the AMR mechanisms, identifying important hub genes/proteins, and their promising targets together with their interactions with important drug targets, which is a crucial step in drug discovery. Therefore, the present review aims to provide holistic information on currently employed bioinformatic tools and their application in the discovery of multifunctional novel therapeutic drugs to combat the current problem of AMR in ESKAPE pathogens. The review also summarizes the recent advancement in the AMR research in ESKAPE pathogens utilizing the in silico approaches.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India
| | - Reetika Debroy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Medical Sciences, SBST, VIT, 632014, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Biotechnology, SBST, VIT, 632014, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India. .,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India. .,School of Biosciences and Technology VIT, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Chen YT, Yang KX, Dai ZY, Yi H, Peng XX, Li H, Chen ZG. Repressed Central Carbon Metabolism and Its Effect on Related Metabolic Pathways in Cefoperazone/Sulbactam-Resistant Pseudomonas aeruginosa. Front Microbiol 2022; 13:847634. [PMID: 35308347 PMCID: PMC8927769 DOI: 10.3389/fmicb.2022.847634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Metabolic shift and antibiotic resistance have been reported in Pseudomonas aeruginosa. However, the global metabolic characteristics remain largely unknown. The present study characterizes the central carbon metabolism and its effect on other metabolic pathways in cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (PA-RSCF). GC-MS-based metabolomics shows a repressed central carbon metabolism in PA-RSCF, which is confirmed by measuring expression of genes and activity of enzymes in the metabolism. Furthermore, expression of the genes that encode the enzymes for the first step of fatty acid biosynthesis, glutamate metabolism, and electron transport chain is reduced, confirmed by their enzymatic activity assay, and the key enzyme for riboflavin metabolism is also reduced, indicating the decreased metabolic flux to the four related metabolic pathways. Moreover, the role of the reduced riboflavin metabolism, being related to ROS generation, in SCF resistance is explored. Exogenous H2O2 potentiates SCF-mediated killing in a dose-dependent manner, suggesting that the decreased ROS resulted from the reduced riboflavin metabolism that contributed to the resistance. These results indicate that the repressed central carbon metabolism and related riboflavin metabolism contribute to SCF resistance, but increasing ROS can restore SCF sensitivity. These findings characterize the repressed central carbon metabolism and its effect on other metabolic pathways as the global metabolic features in PA-RSCF.
Collapse
Affiliation(s)
- Yue-tao Chen
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Ke-xin Yang
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-yuan Dai
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Yi
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Hui Li,
| | - Zhuang-gui Chen
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhuang-gui Chen,
| |
Collapse
|
6
|
He Y, Zhao X, Chen L, Zhao L, Yang H. Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
8
|
Transcriptome-based design of antisense inhibitors potentiates carbapenem efficacy in CRE Escherichia coli. Proc Natl Acad Sci U S A 2020; 117:30699-30709. [PMID: 33199638 DOI: 10.1073/pnas.1922187117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) has risen substantially, and the study of CRE resistance mechanisms has become increasingly important for antibiotic development. Although much research has focused on genomic resistance factors, relatively few studies have examined CRE pathogens through changes in gene expression. In this study, we examined the gene expression profile of a CRE Escherichia coli clinical isolate that is sensitive to meropenem but resistant to ertapenem to explore transcriptomic contributions to resistance and to identify gene knockdown targets for carbapenem potentiation. We sequenced total and short RNA to analyze the gene expression response to ertapenem or meropenem treatment and found significant expression changes in genes related to motility, maltodextrin metabolism, the formate hydrogenlyase complex, and the general stress response. To validate these findings, we used our laboratory's Facile Accelerated Specific Therapeutic (FAST) platform to create antisense peptide nucleic acids (PNAs), gene-specific molecules designed to inhibit protein translation. PNAs were designed to inhibit the pathways identified in our transcriptomic analysis, and each PNA was then tested in combination with each carbapenem to assess its effect on the antibiotics' minimum inhibitory concentrations. We observed significant PNA-antibiotic interaction with five different PNAs across six combinations. Inhibition of the genes hycA, dsrB, and bolA potentiated carbapenem efficacy in CRE E. coli, whereas inhibition of the genes flhC and ygaC conferred added resistance. Our results identify resistance factors and demonstrate that transcriptomic analysis is a potent tool for designing antibiotic PNA.
Collapse
|
9
|
Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20:356-370. [PMID: 30886350 PMCID: PMC6525649 DOI: 10.1038/s41576-019-0108-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance are imperative for clinical practice to treat resistant infections and for public health efforts to limit the spread of resistance. Technologies such as next-generation sequencing are expanding our abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of antimicrobial resistance identification and characterization methods, from traditional antimicrobial susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance discovery and discuss tools and databases used in antimicrobial resistance studies.
Collapse
Affiliation(s)
- Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|