1
|
Bento JT, Moreira G, Pinto E, Gomes da Silva P, Rebelo H, Mourão J, Sousa SIV, Mesquita JR. Airborne Fungal Spore Diversity Assessment Using Culture-Dependent and Metabarcoding Approaches in Bat-Inhabited Natural and Anthropogenic Roosts in Portugal. J Fungi (Basel) 2025; 11:360. [PMID: 40422694 DOI: 10.3390/jof11050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/22/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
Cave environments represent extreme and underexplored ecosystems wherein fungi play a crucial role in nutrient cycling and ecological dynamics. This study provides the first comprehensive assessment of fungal diversity in air samples from caves across Portugal, with six samples from five locations being assessed through culture-dependent and metabarcoding approaches. From the five bat roosts studied, eleven morphologically distinct fungal colonies were isolated, with genera such as Aspergillus, Penicillium, and Chaetomium identified. Concurrently, Oxford Nanopore sequencing of the internal transcribed spacer (ITS) region of fungal rDNA revealed 286 genera, with Aspergillus, Candida, and Calyptella dominating across the sites. Diversity indices and community composition analyses, including Principal Coordinate Analysis (PCoA) and hierarchical clustering, highlighted distinct fungal profiles influenced by site-specific environmental factors and human activity. The data underscores the dual role of fungi in bat roosts as essential decomposers, emphasizing their adaptability to oligotrophic conditions. These findings advance our understanding of subterranean fungal ecology and emphasize the need for targeted conservation efforts to protect cave ecosystems from anthropogenic impacts.
Collapse
Affiliation(s)
- Jaqueline T Bento
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Guilherme Moreira
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
| | - Priscilla Gomes da Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Hugo Rebelo
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joana Mourão
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Sofia I V Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - João R Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Salazar-Hamm PS, Homan FE, Good SA, Hathaway JJM, Clements AE, Haugh EG, Caesar LK. Subterranean marvels: microbial communities in caves and underground mines and their promise for natural product discovery. Nat Prod Rep 2025; 42:592-622. [PMID: 39950737 DOI: 10.1039/d4np00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2014 to 2024Since the dawn of human history, caves have played an intimate role in our existence. From our earliest ancestors seeking shelter from the elements to more recent generations harnessing cave substances for medicinal purposes, caves have served as essential resources and havens. The last 40 years of geomicrobiology research has replaced the outdated perception of subterranean environments as lifeless and unchanging with the realization that vibrant microbial communities have adapted to thrive in extreme conditions over millions of years. The ability of subterranean microbial communities to withstand nutrient deprivation and darkness creates a unique reservoir of untapped biosynthetic potential. These communities offer exciting prospects for medicine (e.g., antimicrobial and antitumor therapies) and biotechnology (e.g., redox chemical properties and biomineralization). This article highlights the significance of caves and mines as reservoirs of microbial diversity, the potential impact of their bioactive compounds on the fields of healthcare and biotechnology, and the significant challenges that must be overcome to access and harness the biotechnological potential of subterranean microbial communities. Additionally, it emphasizes the conservation efforts needed to protect these delicate ecosystems, ensuring the preservation of both ancient traditions and tomorrow's medicines.
Collapse
Affiliation(s)
| | - Frances E Homan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Shyleigh A Good
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | | | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Evelyn G Haugh
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
3
|
Lima J, Barbosa R, Bento D, Barbier E, Bernard E, Bezerra J, Souza-Motta C. Aspergillus, Penicillium, and Talaromyces ( Eurotiales) in Brazilian caves, with the description of four new species. Fungal Syst Evol 2024; 14:89-107. [PMID: 39830302 PMCID: PMC11736086 DOI: 10.3114/fuse.2024.14.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 01/05/2025] Open
Abstract
The study of the Brazilian cave mycobiota has revealed a rich but highly diverse assemblage of fungi, with Aspergillus, Penicillium, and Talaromyces being the most frequently reported genera. The present study investigated the airborne fungi and fungi obtained from the bodies of bats, guano, and the soil/sediment from the caves Urubu (in the Atlantic Forest) and Furna Feia (in the Caatinga dryland forest) in the Northeast region of Brazil. Fungal strains were identified based on morphological features and multilocus phylogenetic analyses of ITS, beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) sequences. A total of 86 isolates were obtained, representing Aspergillus (34), Penicillium (20), Talaromyces (2), and 30 isolates belonging to other genera that will be reported on elsewhere. These isolates were identified as 18 Aspergillus, nine Penicillium, and one Talaromyces species. Eight of the species identified are reported for the first time from a cave environment. Four species showed unique morphological features and phylogenetic relationships, and are newly described. These include two new species of Aspergillus (A. alvaroi sp. nov. and A. guanovespertilionum sp. nov.), one of Penicillium (P. cecavii sp. nov.), and one of Talaromyces (T. potiguarorum sp. nov.). Our study increases the awareness and known richness of the Brazilian and global fungal diversity found in caves. Citation: Lima JMS, Barbosa RN, Bento DM, Barbier E, Bernard E, Bezerra JDP, Souza-Motta CM (2024). Aspergillus, Penicillium, and Talaromyces (Eurotiales) in Brazilian caves, with the description of four new species. Fungal Systematics and Evolution 14: 89-107. doi: 10.3114/fuse.2024.14.06.
Collapse
Affiliation(s)
- J.M.S. Lima
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - R.N. Barbosa
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - D.M. Bento
- Centro Nacional de Pesquisa e Conservação de Cavernas (CECAV), Base Avançada no Rio Grande do Norte, Instituto Chico Mendes de Conservação da Biodiversidade, CEP: 59015-350, Natal, RN, Brazil
| | - E. Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Professor Paulo Donato Castellane, s/n, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - E. Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - J.D.P. Bezerra
- Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| |
Collapse
|
4
|
Gutiérrez-Granados G, Torres-Beltrán UC, Castellanos-Moguel J, Rodríguez-Moreno Á, Sánchez-Cordero V. Fungal and bat diversities along a landscape gradient in central Mexico. PLoS One 2024; 19:e0310235. [PMID: 39250470 PMCID: PMC11383230 DOI: 10.1371/journal.pone.0310235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Species interactions between bats and fungi are poorly known. We documented the association between fungal and bat diversities along a landscape gradient. Ten, eight, and seven bat species were captured in conserved, semi-conserved, and urban sites, respectively. Eptesicus fuscus, Myotis ciliolabrum and Corynorhinus townsendii were the most abundant in conserved and semi-conserved sites. E. fuscus, Myotis velifer, and Lasiurus cinereus were abundant in urban sites. C. townsendii was the least abundant bat. A total of 15 cultivated fungi genera included the fungal diversity in bats, of which nine fungi genera were shared along the landscape gradient. Penicillium and Aspergillus were the most abundant genera, and Aureobasidium, Bispora, Stachybotrys, and Verticillium were only documented in the conserved sites. We observed a higher fungal diversity associated with bat species along this landscape gradient. The individual site-based accumulation curves of fungal diversity showed significant decreasing values along the conserved, semi-conserved, and urban sites, respectively. In conserved and urban sites, M. californicus and M. velifer showed the highest fungal diversity, respectively. E. fuscus was associated to the fungi genera Scopulariopsis, Alternaria, Penicillium and Beauveria; L. cinereus to Cladosporium and Aspergillus, and M. velifer to Alternaria sp1, Bispora and Trichoderma. Conserved sites showed both high bat and fungal diversities [species richness and abundance] compared to semi-conserved and urban sites. More studies associating bat and fungal diversities in other ecosystems are needed to corroborate this pattern.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Granados
- Facultad de Estudios Superiores Zaragoza, UMIEZ, UNAM, Batalla 5 de mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, CDMX, Iztapalapa, México
| | - Uriel C Torres-Beltrán
- Facultad de Estudios Superiores Zaragoza, UMIEZ, UNAM, Batalla 5 de mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, CDMX, Iztapalapa, México
| | - Judith Castellanos-Moguel
- Departamento El Hombre y Su Ambiente, Laboratorio de Micología, Universidad Autónoma Metropolitana-Xochimilco, CDMX, Mexico City, México
| | - Ángel Rodríguez-Moreno
- Departamento de Zoología, Instituto de Biología, Pabellón Nacional de la Biodiversidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, México
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Pabellón Nacional de la Biodiversidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, México
| |
Collapse
|
5
|
Man BY, Xiang X, Cheng XY, Wang HM, Su CT, Huang QB, Luo Y, Zhang C, Cheng G, Ni YY, Shao XH. Deconstructing the Dimensions of Mycobiome Fingerprints in Luohandu Cave, Guilin, Southern China. Microorganisms 2024; 12:211. [PMID: 38276196 PMCID: PMC10818497 DOI: 10.3390/microorganisms12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Subterranean karst caves are windows into the terrestrial subsurface to deconstruct the dimensions of mycobiome fingerprints. However, impeded by the constraints of remote locations, the inaccessibility of specimens and technical limitations, the mycobiome of subterranean karst caves has remained largely unknown. Weathered rock and sediment samples were collected from Luohandu cave (Guilin, Southern China) and subjected to Illumina Hiseq sequencing of ITS1 genes. A total of 267 known genera and 90 known orders in 15 phyla were revealed in the mycobiomes. Ascomycota dominated all samples, followed by Basidiomycota and Mortierellomycota. The sediments possessed the relatively highest alpha diversity and were significantly different from weathered rocks according to the diversity indices and richness metrics. Fifteen families and eight genera with significant differences were detected in the sediment samples. The Ca/Mg ratio appeared to significantly affect the structure of the mycobiome communities. Ascomycota appeared to exert a controlling influence on the mycobiome co-occurrence network of the sediments, while Ascomycota and Basidiomycota were found to be the main phyla in the mycobiome co-occurrence network of weathered rocks. Our results provide a more comprehensive dimension to the mycobiome fingerprints of Luohandu cave and a new window into the mycobiome communities and the ecology of subterranean karst cave ecosystems.
Collapse
Affiliation(s)
- Bai-Ying Man
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Xiao-Yu Cheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hong-Mei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chun-Tian Su
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin 541004, Guangxi, China; (C.-T.S.); (Q.-B.H.)
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo 531406, Guangxi, China
| | - Qi-Bo Huang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin 541004, Guangxi, China; (C.-T.S.); (Q.-B.H.)
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo 531406, Guangxi, China
| | - Yang Luo
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Chao Zhang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Gang Cheng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Yu-Yang Ni
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| | - Xing-Hua Shao
- College of Life Science, Shangrao Normal University, Shangrao 334001, China; (X.X.); (Y.L.); (C.Z.); (G.C.); (Y.-Y.N.); (X.-H.S.)
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
6
|
Suetrong S, Preedanon S, Kobmoo N, Srihom C, Somrithipol S, Saengkaewsuk S, Srikitikulchai P, Klaysuban A, Nuankaew S, Chuaseeharonnachai C, Chainuwong B, Muangsong C, Malimart K, Rungjindamai N, Siripornpibul C, Chareonkunnatum U, Ploydam B, Thungprue N, Tongsima S, Zhang ZF, Cai L, Boonyuen N. Unravelling the hidden diversity of cave mycobiota in Thailand's Satun Geopark. Sci Rep 2023; 13:19162. [PMID: 37932293 PMCID: PMC10628224 DOI: 10.1038/s41598-023-43316-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Karst caves are distinctive ecosystems that have limited nutrients, darkness, low to moderate temperatures, and high moisture levels, which allow for a diverse range of fungal communities to thrive. Despite their significance, little is understood about the fungi found in karst caves in Thailand. In 2019, we studied the cultured mycobiota from five substrate types (air, water, rock, soil/sediment, and organic debris) in two karst caves (Le Stegodon and Phu Pha Phet Caves) of the Satun UNESCO Global Geopark, southern Thailand. A cumulative count of 829 distinct fungal morphological types was identified, encompassing 319 fungal culturable were observed. Based on preliminary analyses of the internal transcribed spacer (ITS) sequence using BLAST searches, the most common phylum among the fungal morphotypes was Ascomycota, harboring 282 species in 91 genera, 93.4% of which were distributed in the classes Eurotiomycetes, Sordariomycetes, and Dothideomycetes. The most common fungal genera identified in the two karst caves were Aspergillus, Penicillium, Cladosporium, Talaromyces, Xylaria, and Trichoderma, with 45, 41, 24, 14, 14, and 6 species identified, respectively. Discovering fungi in Thai karst caves highlights the extensive fungal diversity in the Satun UNESCO Global Geopark, implying undiscovered species, and emphasizing the need for comprehensive investigations in other unexplored Thai karst caves.
Collapse
Affiliation(s)
- Satinee Suetrong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sita Preedanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Noppol Kobmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Charisa Srihom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sayanh Somrithipol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Supicha Saengkaewsuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Prasert Srikitikulchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Anupong Klaysuban
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Salilaporn Nuankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Charuwan Chuaseeharonnachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Boonchuai Chainuwong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Chotika Muangsong
- Innovation for Social and Environmental Management, Mahidol University (MU), Amnatcharoen Campus, Amnatcharoen, 37000, Thailand
| | - Kittapha Malimart
- Innovation for Social and Environmental Management, Mahidol University (MU), Amnatcharoen Campus, Amnatcharoen, 37000, Thailand
| | - Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand.
| | - Chaiyaporn Siripornpibul
- Department of Groundwater Resources, Ngamwongwan 54 Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Umapon Chareonkunnatum
- Department of Mineral Resources, Region 4, Tha Kham, Phunphin, Surat Thani, 84130, Thailand
| | - Bumrungrat Ploydam
- Khao Banthat Wildlife Sanctuary, Ban Na, Srinagarindra District, 93000, Phatthalung, Thailand
| | | | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 51145, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Preedanon S, Suetrong S, Srihom C, Somrithipol S, Kobmoo N, Saengkaewsuk S, Srikitikulchai P, Klaysuban A, Nuankaew S, Chuaseeharonnachai C, Chainuwong B, Muangsong C, Zhang Z, Cai L, Boonyuen N. Eight novel cave fungi in Thailand's Satun Geopark. Fungal Syst Evol 2023; 12:1-30. [PMID: 38455950 PMCID: PMC10915585 DOI: 10.3114/fuse.2023.12.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 03/09/2024] Open
Abstract
Karst caves are unique oligotrophic ecosystems characterised by the scarcity of organic litter, darkness, low to moderate temperatures, and high humidity, supporting diverse fungal communities. Despite their importance, little is known about the fungi in karst caves in Thailand. In 2019, we explored the culturable mycobiota associated with three selected types of substrates (air, soil/sediment and organic litter samples) from two karst caves, the Le Stegodon and Phu Pha Phet Caves, in the Satun UNESCO Global Geopark in southern Thailand. Based on morphological characters and multilocus phylogenetic analyses, eight new species (Actinomortierella caverna, Hypoxylon phuphaphetense, Leptobacillium latisporum, Malbranchea phuphaphetensis, Scedosporium satunense, Sesquicillium cavernum, Thelonectria satunensis and Umbelopsis satunensis) were described, illustrated, and compared to closely related species. These new fungal taxa form independent lineages distinct from other previously described species and classified into eight different families across six orders and two phyla (Ascomycota and Mucoromycota). This paper provides additional evidence that the karst caves located within the Satun UNESCO Global Geopark, situated in the southern region of Thailand, harbour a diverse range of newly discovered species. Citation: Preedanon S, Suetrong S, Srihom C, Somrithipol S, Kobmoo N, Saengkaewsuk S, Srikitikulchai P, Klaysuban A, Nuankaew S, Chuaseeharonnachai C, Chainuwong B, Muangsong C, Zhang ZF, Cai L, Boonyuen N (2023). Eight novel cave fungi in Thailand's Satun Geopark. Fungal Systematics and Evolution 12: 1-30. doi: 10.3114/fuse.2023.12.01.
Collapse
Affiliation(s)
- S. Preedanon
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Suetrong
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Srihom
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Somrithipol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - N. Kobmoo
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Saengkaewsuk
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - P. Srikitikulchai
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - A. Klaysuban
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Nuankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Chuaseeharonnachai
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - B. Chainuwong
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Muangsong
- Innovation for Social and Environmental Management, Mahidol University (MU), Amnatcharoen Campus, Amnatcharoen 37000, Thailand
| | - Z.F. Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51145, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - N. Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
8
|
Stupar M, Savković Ž, Popović S, Simić GS, Grbić ML. Speleomycology of Air in Stopića Cave (Serbia). MICROBIAL ECOLOGY 2023; 86:2021-2031. [PMID: 37000232 PMCID: PMC10064612 DOI: 10.1007/s00248-023-02214-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Fungi can colonize organic matter present in subterranean sites and have a significant role as dwellers in different microniches of cave habitats. In order to analyze the content of airborne fungal propagules in different parts of "Stopića Cave," a touristic site in Serbia, air sampling was carried out in three seasons during 2020, prior to and during the onset of COVID-19 pandemic. Culturable mycobiota was identified using both microscopic techniques and ITS region/BenA gene barcoding, while multivariate analyses were employed to establish the link between fungal taxa and different environmental factors. The maximal measured fungal propagule concentrations were recorded during spring sampling which were based on fungal propagule concentration categories; the cave environment matches the category V. A total of 29 fungal isolates were identified, while Aspergillus, Cladosporium, Fusarium, Lecanicillium, Mucor, and Penicillium were the most diverse genera. According to the trophic mode, most of the isolated fungal species were pathotrophs (75.86%), but when regarding ecological guilds, the most dominant were undefined saprobes and animal pathogens (41.38% for each). Show caves are especially vulnerable to human impacts, and the fungal propagules' concentration within the caves could be good indices for the level of ecological disturbance.
Collapse
Affiliation(s)
- Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia.
| | - Željko Savković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Slađana Popović
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Gordana Subakov Simić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | | |
Collapse
|