1
|
Manikandan K, Ramanathan RA. Plant Growth-Promoting Potential of Colletotrichum sp. Isolated from Ocimum basilicum L. Leaves: A Broad-Spectrum Evaluation. Curr Microbiol 2025; 82:130. [PMID: 39928160 DOI: 10.1007/s00284-025-04109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
The primary objective of this study was to assess the growth-promoting potential of Colletotrichum sp. as a broad-spectrum plant inoculant and to investigate its applicability beyond its natural host range. Out of ten endophytes isolated from Ocimum basilicum, only four were reported for IAA production and among them, Colletotrichum sp. was chosen for further investigation due to its higher IAA production. Highest production of IAA was observed by providing Czapek dox broth with dextrose as carbon source, ammonium sulphate as nitrogen source at pH 7 and 32 °C. The crude fungal extract from Colletotrichum sp. was tested for its impact on rice plants under different application methods (soil drenching, foliar spraying, and seed immersion). Seed immersion treatment showed a notable effect on the growth of rice seedlings in contrast to soil drenching and foliar spraying. Plant growth assay with fungal elicitor treatment of plantlets produced by shoot culture, supplementing with 0.04 mL of culture filtrate per 30 mL media has significant impact on induction of rooting and overall biomass in Ocimum tenuiflorum as compared to untreated control plants. High-resolution liquid chromatography mass spectrometry (HR-LCMS) analysis of the fungal extract revealed the production of 3-indoleacetic acid and related intermediates.
Collapse
Affiliation(s)
- Karthika Manikandan
- Department of Botany, Government Victoria College, University of Calicut, Palakkad, Kerala, 678001, India
| | - Rasmi Avanoor Ramanathan
- Department of Botany, Government Victoria College, University of Calicut, Palakkad, Kerala, 678001, India.
| |
Collapse
|
2
|
Cao K, Chen J, Li Q, Gu P, Li L, Huang R. Bacteria from nodules of Abrus mollis Hance: genetic diversity and screening of highly efficient growth-promoting strains. Front Microbiol 2024; 15:1345000. [PMID: 38680912 PMCID: PMC11045970 DOI: 10.3389/fmicb.2024.1345000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.
Collapse
Affiliation(s)
- Kexin Cao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiuling Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Gu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongshao Huang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2023; 22:226. [PMID: 37925404 PMCID: PMC10625306 DOI: 10.1186/s12934-023-02234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
Collapse
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
5
|
Gomes A, Narciso R, Regalado L, Pinheiro MC, Barros F, Sario S, Santos C, Mendes RJ. Disclosing the native blueberry rhizosphere community in Portugal-an integrated metagenomic and isolation approach. PeerJ 2023; 11:e15525. [PMID: 37397024 PMCID: PMC10312161 DOI: 10.7717/peerj.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Backgorund The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.
Collapse
Affiliation(s)
- Anicia Gomes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Narciso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Laura Regalado
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Margarida Cardeano Pinheiro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filipa Barros
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sara Sario
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rafael J. Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
7
|
Pereira EC, Zabalgogeazcoa I, Arellano JB, Ugalde U, Vázquez de Aldana BR. Diaporthe atlantica enhances tomato drought tolerance by improving photosynthesis, nutrient uptake and enzymatic antioxidant response. FRONTIERS IN PLANT SCIENCE 2023; 14:1118698. [PMID: 36818856 PMCID: PMC9929572 DOI: 10.3389/fpls.2023.1118698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/31/2023]
Abstract
Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.
Collapse
Affiliation(s)
- Eric C. Pereira
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Juan B. Arellano
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Unai Ugalde
- Biofungitek Limited Society (S.L.) Parque Científico y Tecnológico de Bizkaia, Derio, Spain
| | - Beatriz R. Vázquez de Aldana
- Plant-Microorganism Interactions Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
8
|
Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023; 14:1105299. [PMID: 36876098 PMCID: PMC9978114 DOI: 10.3389/fmicb.2023.1105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Festuca rubra subsp. pruinosa is a perennial grass growing in sea cliffs where plants are highly exposed to salinity and marine winds, and often grow in rock fissures where soil is absent. Diaporthe species are one of the most abundant components of the root microbiome of this grass and several Diaporthe isolates have been found to produce beneficial effects in their host and other plant species of agronomic importance. In this study, 22 strains of Diaporthe isolated as endophytes from roots of Festuca rubra subsp. pruinosa were characterized by molecular, morphological, and biochemical analyses. Sequences of the nuclear ribosomal internal transcribed spacers (ITS), translation elongation factor 1-α (TEF1), beta-tubulin (TUB), histone-3 (HIS), and calmodulin (CAL) genes were analyzed to identify the isolates. A multi-locus phylogenetic analysis of the combined five gene regions led to the identification of two new species named Diaporthe atlantica and Diaporthe iberica. Diaporthe atlantica is the most abundant Diaporthe species in its host plant, and Diaporthe iberica was also isolated from Celtica gigantea, another grass species growing in semiarid inland habitats. An in vitro biochemical characterization showed that all cultures of D. atlantica produced indole-3-acetic acid and ammonium, and the strains of D. iberica produced indole 3-acetic acid, ammonium, siderophores, and cellulase. Diaporthe atlantica is closely related to D. sclerotioides, a pathogen of cucurbits, and caused a growth reduction when inoculated in cucumber, melon, and watermelon.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
9
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
10
|
Toghueo RMK, Zabalgogeazcoa I, Pereira EC, Vazquez de Aldana BR. A Diaporthe Fungal Endophyte From a Wild Grass Improves Growth and Salinity Tolerance of Tritordeum and Perennial Ryegrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896755. [PMID: 35720593 PMCID: PMC9198640 DOI: 10.3389/fpls.2022.896755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 06/02/2023]
Abstract
Some microbiome components can provide functions that extend the capabilities of plants, increasing the environmental adaptability and performance of holobionts. Festuca rubra subsp. pruinosa is a perennial grass adapted to rocky sea cliffs, where soil and nutrients are very limited, and exposure to salinity is continuous. This study aimed to investigate if a Diaporthe fungal endophyte belonging to the core microbiome of Festuca rubra roots could improve the performance of two agricultural grasses. In a greenhouse experiment, plants of tritordeum (Triticum durum x Hordeum chilense) and perennial ryegrass (Lolium perenne) were inoculated with Diaporthe strain EB4 and subjected to two salinity conditions (0 and 200 mM NaCl). Biomass production, mineral elements, proline, hormone profiles, antioxidant capacity, and total phenolic compounds were examined in plants, and fungal functions potentially related to the promotion of plant growth were determined. The inoculation with Diaporthe promoted plant growth of both grasses, increasing leaf biomass (84% in tritordeum and 29% in perennial ryegrass), root biomass, nutrient content (N, Ca, Mg, and Fe), and the production of indole 3-acetic acid, regardless of the salinity treatment. Improved growth and nutrient uptake might occur because Diaporthe produces several extracellular enzymes capable of recycling organic nutrient pools. In addition, the fungus produced indole 3-acetic acid in vitro and modulated the production of this phytohormone in the plant. Under salinity, the activity of Diaporthe ameliorated the stress, increasing proline, nutrient uptake in roots, gibberellins, and indole 3-acetic acid, which in turn results into improved growth. Thus, this fungus can transfer to alternative hosts some advantages useful at its original habitat.
Collapse
Affiliation(s)
| | | | | | - Beatriz R. Vazquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|