1
|
Fan Q, Wang H, Yuan S, Quan Y, Li R, Yi L, Jia A, Wang Y, Wang Y. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence 2025; 16:2467156. [PMID: 39977342 PMCID: PMC11845055 DOI: 10.1080/21505594.2025.2467156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Streptococcus suis, a zoonotic pathogen, is commonly found as a commensal bacterium in the respiratory tracts of pigs. Under specific conditions, it becomes invasive and enters the blood, causing severe systemic infections. For S. suis, effective acquisition of carbon sources in different host niches is necessary for its survival. However, as of now, our understanding of the metabolism of S. suis within the host is highly restricted. Pyruvate formate lyase (PFL) plays a crucial role in bacterial survival of in glucose-limited and hypoxic host tissues. Here, we investigated the physiological and metabolic functions of PFL PflB in S. suis and elucidated its pivotal role in regulating virulence within the mucosal and blood niches. We demonstrate that PflB is a key enzyme for S. suis to support mixed-acid fermentation under glucose-limited and hypoxic conditions. Additionally, PflB is involved in regulating S. suis morphology and stress tolerance, and its regulation of capsular polysaccharide content depends on dynamic carbon availability. We also found that PflB is associated with the capacity of S. suis to cause bacteremia and persist in the upper respiratory tract to induce persistent infection. Our results provide highly persuasive evidence for the relationship between metabolic regulation and the virulence of S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, P.R. China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| |
Collapse
|
2
|
Yuan S, Liu B, Quan Y, Gao S, Zuo J, Jin W, Shen Y, Li Y, Wang Y, Wang Y. Streptococcus suis regulates central carbon fluxes in response to environment to balance drug resistance and virulence. Microbiol Res 2025; 296:128157. [PMID: 40174362 DOI: 10.1016/j.micres.2025.128157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Streptococcus suis, a zoonotic pathogen, must adapt to the distinct nutritional environment of the host microhabitat during infection and the establishment of invasive disease, primarily by modulating its metabolic pathways. Metabolic plasticity endows S. suis with an enhanced capacity for environmental adaptation. Multidrug-resistant S. suis is increasingly prevalent due to the extensive use of antibiotics in swine production. In this study, an environment-dependent evolutionary model demonstrated that S. suis could modulate its metabolism in response to environmental changes, thereby altering its drug resistance and virulence. The central carbon flux regulated by pyruvate dehydrogenase (PDH) was identified as a pivotal node in balancing drug resistance and virulence in S. suis. Within the in vivo host environment, increased carbon flux through PDH enhances the production of capsular polysaccharide (CPS), thereby improving immune evasion. Conversely, in the antibiotic environment, reduced carbon flux through PDH downregulates the bacterial metabolic state, which diminishes the induction of toxic metabolites by antibiotics, thereby augmenting drug resistance. This concept provides a reasonable explanation for the puzzling phenomena observed with S. suis in clinical settings. For instance, antibiotic-resistant S. suis has a survival advantage in pig farms where antibiotics are frequently used but is less frequently associated with invasive infections. Furthermore, this study demonstrates that exogenous pyruvate can enhance the bactericidal effect of gentamicin against clinically multidrug-resistant S. suis, offering new insights and potential strategies for controlling clinical multidrug-resistant S. suis infections.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Jing Zuo
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Sciences, Sichuan University, Chengdu 610000, China.
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
3
|
Yang Q, Li N, Zheng Y, Tian Y, Liang Q, Zhao M, Chu H, Gong Y, Wu T, Wei S, Wang H, Yan G, Li F, Lei L. Identification and characterization of ugpE associated with the full virulence of Streptococcus suis. Vet Res 2025; 56:82. [PMID: 40241177 PMCID: PMC12001685 DOI: 10.1186/s13567-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen that threatens both animal and human health worldwide. UgpE is a protein subunit of the Ugp (uptake of glycerol phosphate) transporter system that is involved in glycerophospholipid synthesis in bacterial membranes. In this study, an ugpE deletion mutant was constructed and the effects of ugpE deletion on cell morphology, biofilm formation, and virulence were investigated. Deletion of ugpE slowed down bacterial growth and impaired cell chain formation and capsular synthesis by downregulating the mRNA levels of the capsular regulon genes cps-2B, cps-2C, and cps-2S. Deletion of ugpE also led to decreased tolerance to heat, oxidative, and acid-base stress. Crystal violet staining and scanning electron microscopy demonstrate that ugpE may negatively regulate biofilm formation in liquid culture and the rdar biofilm morphotype on agar plates. Moreover, ugpE deletion not only reduced hemolysin activity, survival in whole human blood, and anti-phagocytosis ability against porcine alveolar macrophages (PAM) but also enhanced bacterial adhesion and invasion of human cerebral microvascular endothelial cells (hCMEC/D3) by upregulating the expression of multiple genes associated with cell adhesion. In a mouse infection model, ugpE deletion significantly attenuated virulence and lowered the number of viable bacteria in the blood and major organs, as well as distribution of macrophages. In conclusion, this study identified that UgpE may play a pivotal role in the regulation of various properties including virulence and biofilm formation of S. suis.
Collapse
Affiliation(s)
- Qiulei Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Zheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanyan Tian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiao Liang
- Department of First Hospital, Jilin University, Changchun, China
| | - Miaomiao Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hong Chu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shaopeng Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - He Wang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Guangmou Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- College of Animal Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
4
|
Wang L, Qiu J, He B, Wu X, Chen Q, Wang Q, Wu R, Zheng B, Zhou L, Huang X. Isolation, Identification, and Molecular Genetic Characteristics of a Pathogenic Strain of Streptococcus suis Serotype 3. Pathogens 2025; 14:192. [PMID: 40005567 PMCID: PMC11858596 DOI: 10.3390/pathogens14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Streptococcus suis (S. suis) is considered as one of the most crucial bacterial pathogens that leads to serious economic losses to the swine industry. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Epidemiology data underscore the importance of S. suis serotype 3 (SS3). However, except for a few epidemiological information, limited study information is available on this serotype. Herein, a pathogenic SS3 (the S. suis strain YA) was isolated from infected piglets in clinical practice, and then whole genome sequencing and analysis, hemolytic activity, antimicrobial susceptibility, pathogenicity to mice and piglets were conducted. The results of the whole genome sequencing of the S. suis strain YA showed that the complete genome was 2,167,682 bp in length with a G + C content of 41.2% and exhibited a unique sequence type (ST1801). The result of phylogenetic tree showed that it was most closely related to strain DNC15 and 6407 (ST54) from Denmark. The tet(W) and erm(B) resistant genes were identified in the S. suis strain YA by inserting into rum locus, in accordance with the result of resistance to tetracyclines and macrolide-lincosamide-streptogramin antibiotics. Twenty-seven key virulence factors were detected in the S. suis strain YA, including sly, ef and mrp, which contribute to pathogenicity in mice and piglets, causing bleeding and congestion in multiple tissue organs especially in the brains. And the LD50 value for mice was 1.54 × 107 CFU. Therefore, our research emphasizes the importance of understanding SS3, and provides valuable information for the scientific prevention and control of S. suis.
Collapse
Affiliation(s)
- Longbai Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingli Qiu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bing He
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bohan Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Li R, Liu B, Wang Y, Yi L, Wang S, Hou X, Wang Y. Targeting AI-2 quorum sensing: harnessing natural products against Streptococcus suis biofilm infection. Vet Res 2025; 56:26. [PMID: 39905565 DOI: 10.1186/s13567-025-01450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
The biofilm acts as a protective layer for Streptococcus suis (S. suis), contributing to the development of drug resistance and chronic infections. Autoinducer 2 (AI-2) quorum sensing represents the primary regulatory pathway governing biofilm formation in S. suis. Consequently, targeting AI-2 quorum sensing to inhibit biofilm formation represents a promising strategy for preventing and managing drug resistance and chronic infections caused by S. suis. This study established a small natural product library by integrating commercial drug molecules with Chinese herbal medicine molecules. Consequently, two natural products, salvianolic acid A (SAA) and rhapontin (RH), which target S. suis AI-2 via quorum sensing, were identified. SAA and RH inhibit AI-2 synthesis through noncompetitive and competitive binding to S-ribosylhomocysteinase (LuxS). By inhibiting S. suis AI-2 quorum sensing, these compounds modulate the expression of adhesion genes and the synthesis of extracellular polysaccharides (EPS), reducing the adhesion ability of S. suis and ultimately inhibiting biofilm formation. Using LC‒MS/MS, we further analysed the impact of SAA and RH on the metabolic activity of S. suis, revealing the potential medicinal value of these compounds. Finally, the efficacy of SAA and RH against S. suis infection was validated in Galleria mellonella larvae, confirming their significant anti-infection effects.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Shaohui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
6
|
Hu R, Liu F, Yu F, Hou J, Chen D, Gu Z. capD deletion in the Elizabethkingia miricola capsular locus leads to capsule production deficiency and reduced virulence. Vet Res 2024; 55:148. [PMID: 39529195 PMCID: PMC11552330 DOI: 10.1186/s13567-024-01394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Elizabethkingia miricola is a multidrug-resistant pathogen that can cause life-threatening infections in immunocompromised humans and outbreaks in amphibians. However, the specific virulence factors of this microorganism have not been described. In this study, we identified the polysaccharide biosynthesis protein-encoding gene capD, which is located in the conserved region of the Wzy-dependent capsule synthesis gene cluster in the E. miricola strain FL160902, and investigated its role in the pathogenesis of E. miricola. Our results revealed that the capD deletion strain (ΔcapD) lost its typical encapsulated structure, with a 45% reduction in cell wall thickness. CapD affects wza expression in the capsule polysaccharide synthesis pathway. Furthermore, the survival rates were significantly reduced in ΔcapD in response to complement-mediated killing, desiccation stress, and macrophage phagocytosis, whereas biofilm formation, surface hydrophobicity, and adherence to both endothelial and epithelial cells were increased. Additionally, the deletion of capD sharply attenuated the virulence of E. miricola in a frog infection model. Complementation of the capD gene restored the biological properties and virulence to wild-type levels. Overall, these findings suggest that CapD contributes to polysaccharide synthesis and plays a crucial role in the pathogenesis of E. miricola.
Collapse
Affiliation(s)
- Ruixue Hu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
- National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Fangyuan Liu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
- National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Fang Yu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
- National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Jiahao Hou
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Dan Chen
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries/Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
- National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China.
| |
Collapse
|
7
|
Dong Z, Li C, Tian X, Guo X, Li X, Ren W, Chi J, Zhang L, Li F, Zhu Y, Zhang W, Yan M. Characterization Studies on the sugC Gene of Streptococcus suis Serotype 2 in Adhesion, Invasion, and Virulence in Mice. Vet Sci 2024; 11:447. [PMID: 39330826 PMCID: PMC11435659 DOI: 10.3390/vetsci11090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
The sugC gene of Streptococcus suis (S. suis) is a coding gene for the ATP-binding transporter-associated protein with strong pathogenicity. In order to reveal the effect of the sugC gene on the virulence of S. suis serotype 2, a wild-type strain of TJS75, isolated from fattening pigs' brain tissue samples, was used as a parent strain, and a knockout sugC gene (ΔsugC) and complementary strain (CΔsugC) were successfully constructed via homologous recombination technology. The biological characteristics of TJS75, ΔsugC and CΔsugC were compared and analyzed through growth curves, biochemical characteristics, hemolysis characteristics, cell infection tests and pathogenicity tests on BALB/c mice. The results of the growth characteristic experiments in vitro showed that the plateau stage growth period of ΔsugC was delayed compared to the TJS75 strain, but there was no difference in the total number of bacteria. The biochemical characteristics and hemolysis ability of ΔsugC in sheep blood had no difference compared with TJS75, but its adhesion and invasion abilities in PK-15 cells were decreased. Knockout of the sugC gene had no impact on the expression levels of adhesion-related genes in TJS75 in real-time PCR analysis. In addition, the LD50 of ΔsugC in BALB/c mice was 1.47 × 108 CFU, seven times higher than that of TJS75 (LD50 = 2.15 × 107 CFU). These results illustrate that the deletion of sugC reduced the virulence of TJS75 to BALB/c mice, but its role in the adhesion and invasion of PK-15 cells in this strain needs to be further explored. In summary, this study provides evidence that the sugC gene is a virulence-related gene in the S. suis serotype 2 strain and plays a crucial role in the adhesion and invasion of S. suis. This study lays a foundation for the further exploration of the potential virulence factors and pathogenesis of S. suis.
Collapse
Affiliation(s)
- Zhimin Dong
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Cheng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Xiangxue Tian
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Xiaoran Guo
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Xiuli Li
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
| | - Weike Ren
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Jingjing Chi
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Li Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Fuqiang Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.Z.); (W.Z.)
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.Z.); (W.Z.)
| | - Minghua Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Z.D.); (C.L.); (X.T.); (X.G.); (W.R.); (J.C.); (L.Z.); (F.L.)
- National Data Center of Animal Health, Tianjin 300381, China
| |
Collapse
|
8
|
Wang H, Fan Q, Wang Y, Yi L, Wang Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC Microbiol 2024; 24:297. [PMID: 39127666 PMCID: PMC11316374 DOI: 10.1186/s12866-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Streptococcus suis is an important zoonotic pathogen. Biofilm formation largely explains the difficulty in preventing and controlling S. suis. However, little is known about the molecular mechanism of S. suis biofilm formation. RESULTS In this study, transcriptomic and metabolomic analyses of S. suis in biofilm and planktonic states were performed to identify key genes and metabolites involved in biofilm formation. A total of 789 differential genes and 365 differential metabolites were identified. By integrating transcriptomics and metabolomics, five main metabolic pathways were identified, including amino acid pathway, nucleotide metabolism pathway, carbon metabolism pathway, vitamin and cofactor metabolism pathway, and aminoacyl-tRNA biosynthesis metabolic pathway. CONCLUSIONS These results provide new insights for exploring the molecular mechanism of S. suis biofilm formation.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
9
|
Gao S, Mao C, Yuan S, Quan Y, Jin W, Shen Y, Zhang X, Wang Y, Yi L, Wang Y. AI-2 quorum sensing-induced galactose metabolism activation in Streptococcus suis enhances capsular polysaccharide-associated virulence. Vet Res 2024; 55:80. [PMID: 38886823 PMCID: PMC11184709 DOI: 10.1186/s13567-024-01335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
10
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
11
|
Wang H, Fan Q, Wang Y, Yi L, Wang Y. Rethinking the control of Streptococcus suis infection: Biofilm formation. Vet Microbiol 2024; 290:110005. [PMID: 38280304 DOI: 10.1016/j.vetmic.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Streptococcus suis is an emerging zoonotic pathogen that is widespread in swine populations. The control of S. suis infection and its associated diseases is a daunting challenge worldwide. Biofilm formation appears to be the main reason for the persistence of S. suis. In this review we gather existing knowledge on S. suis biofilm, describing the role of biofilm formation in S. suis virulence and drug resistance, the regulatory factors of S. suis biofilm formation, and the research progress of inhibiting S. suis biofilm formation, with the aim of providing guidance for future studies related to the field of S. suis biofilms.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
12
|
Liang S, Zhang S, Bao Y, Zhang Y, Liu X, Yao H, Liu G. Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against Streptococcus suis Infection. Vaccines (Basel) 2024; 12:137. [PMID: 38400121 PMCID: PMC10892848 DOI: 10.3390/vaccines12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.
Collapse
Affiliation(s)
- Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shidan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan 364012, China
| | - Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| |
Collapse
|
13
|
Merriman JA, Xu W, Caparon MG. Central carbon flux controls growth/damage balance for Streptococcus pyogenes. PLoS Pathog 2023; 19:e1011481. [PMID: 37384800 DOI: 10.1371/journal.ppat.1011481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Microbial pathogens balance growth against tissue damage to achieve maximum fitness. Central carbon metabolism is connected to growth, but how it influences growth/damage balance is largely unknown. Here we examined how carbon flux through the exclusively fermentative metabolism of the pathogenic lactic acid bacterium Streptococcus pyogenes impacts patterns of growth and tissue damage. Using a murine model of soft tissue infection, we systematically examined single and pair-wise mutants that constrained carbon flux through the three major pathways that S. pyogenes employs for reduction of the glycolytic intermediate pyruvate, revealing distinct disease outcomes. Its canonical lactic acid pathway (via lactate dehydrogenase) made a minimal contribution to virulence. In contrast, its two parallel pathways for mixed-acid fermentation played important, but non-overlapping roles. Anaerobic mixed acid fermentation (via pyruvate formate lyase) was required for growth in tissue, while aerobic mixed-acid pathway (via pyruvate dehydrogenase) was not required for growth, but instead regulated levels of tissue damage. Infection of macrophages in vitro revealed that pyruvate dehydrogenase was required to prevent phagolysosomal acidification, which altered expression of the immunosuppressive cytokine IL-10. Infection of IL-10 deficient mice confirmed that the ability of aerobic metabolism to regulate levels of IL-10 plays a key role in the ability of S. pyogenes to modulate levels of tissue damage. Taken together, these results show critical non-overlapping roles for anaerobic and aerobic metabolism in soft tissue infection and provide a mechanism for how oxygen and carbon flux act coordinately to regulate growth/damage balance. Therapies targeting carbon flux could be developed to mitigate tissue damage during severe S. pyogenes infection.
Collapse
Affiliation(s)
- Joseph A Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
14
|
Quendera AP, Pinto SN, Pobre V, Antunes W, Bonifácio VDB, Arraiano CM, Andrade JM. The ribonuclease PNPase is a key regulator of biofilm formation in Listeria monocytogenes and affects invasion of host cells. NPJ Biofilms Microbiomes 2023; 9:34. [PMID: 37286543 PMCID: PMC10247797 DOI: 10.1038/s41522-023-00397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Biofilms provide an environment that protects microorganisms from external stresses such as nutrient deprivation, antibiotic treatments, and immune defences, thereby creating favorable conditions for bacterial survival and pathogenesis. Here we show that the RNA-binding protein and ribonuclease polynucleotide phosphorylase (PNPase) is a positive regulator of biofilm formation in the human pathogen Listeria monocytogenes, a major responsible for food contamination in food-processing environments. The PNPase mutant strain produces less biofilm biomass and exhibits an altered biofilm morphology that is more susceptible to antibiotic treatment. Through biochemical assays and microscopical analysis, we demonstrate that PNPase is a previously unrecognized regulator of the composition of the biofilm extracellular matrix, greatly affecting the levels of proteins, extracellular DNA, and sugars. Noteworthy, we have adapted the use of the fluorescent complex ruthenium red-phenanthroline for the detection of polysaccharides in Listeria biofilms. Transcriptomic analysis of wild-type and PNPase mutant biofilms reveals that PNPase impacts many regulatory pathways associated with biofilm formation, particularly by affecting the expression of genes involved in the metabolism of carbohydrates (e.g., lmo0096 and lmo0783, encoding PTS components), of amino acids (e.g., lmo1984 and lmo2006, encoding biosynthetic enzymes) and in the Agr quorum sensing-like system (lmo0048-49). Moreover, we show that PNPase affects mRNA levels of the master regulator of virulence PrfA and PrfA-regulated genes, and these results could help to explain the reduced bacterial internalization in human cells of the ΔpnpA mutant. Overall, this work demonstrates that PNPase is an important post-transcriptional regulator for virulence and adaptation to the biofilm lifestyle of Gram-positive bacteria and highlights the expanding role of ribonucleases as critical players in pathogenicity.
Collapse
Affiliation(s)
- Ana Patrícia Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Sandra Nunes Pinto
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Wilson Antunes
- Laboratório de Imagem, Nanomorfologia e Espectroscopia de Raios-X (Linx) da Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Instituto Universitário Militar, Centro de Investigação, Inovação e Desenvolvimento da Academia Militar, Av. Dr Alfredo Bensaúde, 1100-471, Lisboa, Portugal
| | - Vasco D B Bonifácio
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - José Marques Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal.
| |
Collapse
|
15
|
Gao M, Zuo J, Shen Y, Yuan S, Gao S, Wang Y, Wang Y, Yi L. Modeling Co-Infection by Streptococcus suis and Haemophilus parasuis Reveals Influences on Biofilm Formation and Host Response. Animals (Basel) 2023; 13:ani13091511. [PMID: 37174548 PMCID: PMC10177019 DOI: 10.3390/ani13091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Streptococcus suis (S. suis) and Haemophilus parasuis (H. parasuis) are two primary pathogens currently affecting the porcine industry. They often cause encephalitis and arthritis. They also frequently co-infect in clinical settings. In the current study, we identified significant correlations between S. suis and H. parasuis. The results from CI versus RIR suggested that S. suis and H. parasuis were competitive in general. Compared to mono-species biofilm, the biomass, bio-volume, and thickness of mixed-species biofilms were significantly higher, which was confirmed using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. Compared to mono-species biofilm, the viable bacteria in the mixed-species biofilms were significantly lower, which was confirmed using the enumeration of colony-forming units (CFU cm-2). The susceptibility of antibiotics in the co-culture decreased in the planktonic state. In contrast, biofilm state bacteria are significantly more difficult to eradicate with antibiotics than in a planktonic state. Whether in planktonic or biofilm state, the expression of virulence genes of S. suis and H. parasuis in mixed culture was very different from that in single culture. Subsequently, by establishing a mixed infection model in mice, we found that the colonization of the two pathogens in organs increased after mixed infection, and altered the host's inflammatory response. In summary, our results indicate that S. suis and H. parasuis compete when co-cultured in vitro. Surprisingly, S. suis and H. parasuis synergistically increased colonization capacity after co-infection in vivo. This study elucidated the interaction between S. suis and H. parasuis during single infections and co-infections. Future studies on bacterial disease control and antibiotic treatment should consider the interaction of mixed species.
Collapse
Affiliation(s)
- Mengxia Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
16
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
17
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
18
|
Stancheva SG, Frömbling J, Sassu EL, Hennig-Pauka I, Ladinig A, Gerner W, Grunert T, Ehling-Schulz M. Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Microb Pathog 2022; 172:105759. [PMID: 36087692 DOI: 10.1016/j.micpath.2022.105759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae affects pig health status and the swine industry worldwide. Despite the extensive number of studies focused on A. pleuropneumoniae infection and vaccine development, a thorough analysis of the A. pleuropneumoniae exoproteome is still missing. Using a complementary approach of quantitative proteomics and immunoproteomics we gained an in-depth insight into the A. pleuropneumoniae serotype 2 exoproteome, which provides the basis for future functional studies. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 593 exoproteins, of which 104 were predicted to be virulence factors. The RTX toxins ApxIIA and ApxIIIA -were found to be the most abundant proteins in the A. pleuropneumoniae serotype 2 exoproteome. Furthermore, the ApxIVA toxin was one of the proteins showing the highest abundance, although ApxIVA is commonly assumed to be expressed exclusively in vivo. Our study revealed several antigens, including proteins with moonlight functions, such as the elongation factor (EF)-Tu, and proteins linked to specific metabolic traits, such as the maltodextrin-binding protein MalE, that warrant future functional characterization and might present potential targets for novel therapeutics and vaccines. Our Ig-classes specific serological proteome analysis (SERPA) approach allowed us to explore the development of the host humoral immune response over the course of the infection. These SERPAs pinpointed proteins that might play a key role in virulence and persistence and showed that the immune response to the different Apx toxins is distinct. For instance, our results indicate that the ApxIIIA toxin has properties of a thymus-independent antigen, which should be studied in more detail.
Collapse
Affiliation(s)
- Stelli G Stancheva
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Janna Frömbling
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tom Grunert
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
19
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
20
|
Li J, Fan Q, Jin M, Mao C, Zhang H, Zhang X, Sun L, Grenier D, Yi L, Hou X, Wang Y. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis. Virulence 2021; 12:3062-3073. [PMID: 34923916 PMCID: PMC8923065 DOI: 10.1080/21505594.2021.2010398] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus suis (S. suis), more specifically serotype 2, is a bacterial pathogen that threatens the lives of pigs and humans. Like many other pathogens, S. suis exhibits quorum sensing (QS) system-controlled virulence factors, such as biofilm formation that complicates treatment. Therefore, impairing the QS involving LuxS/AI-2 cycle in S. suis, may be a promising alternative strategy for overcoming S. suis infections. In this study, we investigated paeoniflorin (PF), a monoterpenoid glycoside compound extracted from peony, as an inhibitor of S. suis LuxS/AI-2 system. At a sub-minimal inhibitory concentration (MIC) (1/16 MIC; 25 μg/ml), PF significantly reduced biofilm formation by S. suis through inhibition of extracellular polysaccharide (EPS) production, without affecting bacterial growth. Moreover, evidence was brought that PF reduces AI-2 activity in S. suis biofilm. Molecular docking indicated that LuxS may be the target of PF. Monitoring LuxS enzymatic activity confirmed that PF had a partial inhibitory effect. Finally, we showed that the use of PF in a mouse model can relieve S. suis infections. This study highlighted the anti-biofilm potential of PF against S. suis, and brought evidence that it may as an inhibitor of the LuxS/AI-2 system to prevent S. suis biofilm-related infections. PF can thus be used as a new type of natural biofilm inhibitor for clinical application.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Manyu Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche En Écologie Buccale (Greb), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Life Science, Luoyang Normal University, Luoyang, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology Luoyang China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| |
Collapse
|
21
|
Evaluation of immune effect of Streptococcus suis biofilm-associated protein PDH. Vet Microbiol 2021; 263:109270. [PMID: 34749282 DOI: 10.1016/j.vetmic.2021.109270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
As a zoonotic pathogen, Streptococcus suis(S. suis) takes pigs as the main host and is mainly colonizes in the upper respiratory tract and tonsil of pigs, causing septicemia, endocarditis and meningitis in pigs. Pyruvate dehydrogenase (PDH) is an enzyme that catalyzes the conversion of pyruvate to acetyl-CoA. As an immunogenic membrane-associated protein in S. suis, it has been found to be closely related to the formation of biofilm. In this study, the recombinant PDH (rPDH) of S. suis ZY05719 (serotype 2) was expressed and purified in E. coli by His affinity chromatography. Western blotting analysis showed that there was a strong specific reaction between PDH protein and PDH antiserum. Mice were immunized with recombinant PDH and inactivated bacteria, and the relative survival rates were 70 % and 60 %, respectively. In addition, mice immunized with PDH caused high levels of antibodies and high expression of immune-related genes in the spleen, which significantly protected the liver, brain and spleen from pathological damage. In addition, PDH antiserum could significantly inhibit the growth of S. suis and the formation of S. suis biofilm in vitro. These results further suggest that PDH is a promising candidate for S. suis biofilm-related subunit vaccine.
Collapse
|
22
|
Kroes MM, Miranda-Bedate A, Hovingh ES, Jacobi R, Schot C, Pupo E, Raeven RHM, van der Ark AAJ, van Putten JPM, de Wit J, Mariman R, Pinelli E. Naturally circulating pertactin-deficient Bordetella pertussis strains induce distinct gene expression and inflammatory signatures in human dendritic cells. Emerg Microbes Infect 2021; 10:1358-1368. [PMID: 34132167 PMCID: PMC8259873 DOI: 10.1080/22221751.2021.1943537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Respiratory infections caused by Bordetella pertussis are reemerging despite high pertussis vaccination coverage. Since the introduction of the acellular pertussis vaccine in the late twentieth century, circulating B. pertussis strains increasingly lack expression of the vaccine component pertactin (Prn). In some countries, up to 90% of the circulating B. pertussis strains are deficient in Prn. To better understand the resurgence of pertussis, we investigated the response of human monocyte-derived dendritic cells (moDCs) to naturally circulating Prn-expressing (Prn-Pos) and Prn-deficient (Prn-Neg) B. pertussis strains from 2016 in the Netherlands. Transcriptome analysis of moDC showed enriched IFNα response-associated gene expression after exposure to Prn-Pos B. pertussis strains, whereas the Prn-Neg strains induced enriched expression of interleukin- and TNF-signaling genes, as well as other genes involved in immune activation. Multiplex immune assays confirmed enhanced proinflammatory cytokine secretion by Prn-Neg stimulated moDC. Comparison of the proteomes from the Prn-Pos and Prn-Neg strains revealed, next to the difference in Prn, differential expression of a number of other proteins including several proteins involved in metabolic processes. Our findings indicate that Prn-deficient B. pertussis strains induce a distinct and stronger immune activation of moDCs than the Prn-Pos strains. These findings highlight the role of pathogen adaptation in the resurgence of pertussis as well as the effects that vaccine pressure can have on a bacterial population.
Collapse
Affiliation(s)
- Michiel M Kroes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alberto Miranda-Bedate
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elise S Hovingh
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ronald Jacobi
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Corrie Schot
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Bilthoven, Netherlands
| | - René H M Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, Netherlands
| | | | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rob Mariman
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elena Pinelli
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
23
|
Li J, Wang Y, Du Y, Zhang H, Fan Q, Sun L, Yi L, Wang S, Wang Y. mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiol 2021; 21:111. [PMID: 33849451 PMCID: PMC8045309 DOI: 10.1186/s12866-021-02170-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. We have previously reported the structure of LuxS protein and found that the luxS gene is closely related to biofilm, virulence gene expression and drug resistance of SS2. However, the mechanism of luxS mediated SS2 stress response is unclear. Therefore, this experiment performed stress response to luxS mutant (ΔluxS) and complement strain (CΔluxS), overexpression strain (luxS+) and wild-type SS2 strain HA9801, and analyzed the differential phenotypes in combination with transcriptome data. Results The results indicate that the luxS gene deletion causes a wide range of phenotypic changes, including chain length. RNA sequencing identified 278 lx-regulated genes, of which 179 were up-regulated and 99 were down-regulated. Differential genes focus on bacterial growth, stress response, metabolic mechanisms and drug tolerance. Multiple mitotic genes were down-regulated; while the ABC transporter system genes, cobalamin /Fe3+-iron carrier ABC transporter ATPase and oxidative stress regulators were up-regulated. The inactivation of the luxS gene caused a significant reduction in the growth and survival in the acid (pH = 3.0, 4.0, 5.0) and iron (100 mM iron chelator 2,2′-dipyridyl) stress environments. However, the mutant strain ΔluxS showed increased antioxidant activity to H2O2 (58.8 mmol/L). Conclusions The luxS gene in SS2 appears to play roles in iron metabolism and protective responses to acidic and oxidative environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02170-w.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yanbin Du
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China. .,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
24
|
Peng L, Lin M, Huang Z, Guo S, Sun H, Yang X. Genetic analysis and pathogenicity of different sequence types of Streptococcus suis isolated from pigs in southern China. FEMS Microbiol Lett 2021; 367:5807079. [PMID: 32175560 DOI: 10.1093/femsle/fnaa049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
In this study, 52 Streptococcus suis isolates from pigs in southern China were divided into four known sequence types (STs) and six new STs, using multilocus sequence typing. Ten representative isolates were selected from 10 STs for the analysis of whole genome sequences. Virulence was assessed in 10 isolates, which were classified into three pathogenic groups. The prevalence of virulence-associated factors in the moderately pathogenic group was higher than that in the highly pathogenic group. The isolates from ST1 complex and serotype 2 were allocated to the moderately pathogenic group, while the isolates from the highly pathogenic group belonged to the non-ST1 complex and non-serotype 2. Three clusters were obtained based on multilocus sequence typing sequences: cluster III isolates from the nasal cavity of healthy pigs were classified into the highly pathogenic group and showed many peculiarities compared with cluster I and II isolates in virulence genotypes, genetic typing and pathogenesis, indicating a potential independent evolutionary line. Our results suggest that S. suis infections in China are becoming more complicated with constantly mutating isolates, which makes it difficult to distinguish their virulence by recognized typing methods. Thus, increased investigation and monitoring of these infections should be a priority for the swine industry in China.
Collapse
Affiliation(s)
- Ling Peng
- Yingdong College of Biology and Agriculture, Joint Laboratory of Animal Infectious Diseases Diagnostic Center of Shaoguan University and Harbin Veterinary Research Institute, Shaoguan University, Shaoguan 512005, China
| | - Mengting Lin
- Yingdong College of Biology and Agriculture, Joint Laboratory of Animal Infectious Diseases Diagnostic Center of Shaoguan University and Harbin Veterinary Research Institute, Shaoguan University, Shaoguan 512005, China
| | - Zishu Huang
- Yingdong College of Biology and Agriculture, Joint Laboratory of Animal Infectious Diseases Diagnostic Center of Shaoguan University and Harbin Veterinary Research Institute, Shaoguan University, Shaoguan 512005, China
| | - Sitao Guo
- Yingdong College of Biology and Agriculture, Joint Laboratory of Animal Infectious Diseases Diagnostic Center of Shaoguan University and Harbin Veterinary Research Institute, Shaoguan University, Shaoguan 512005, China
| | - Hao Sun
- Youcheng (Qingdao) Bio-Technology Co. Ltd, Qingdao 266011, China
| | - Xufu Yang
- Yingdong College of Biology and Agriculture, Joint Laboratory of Animal Infectious Diseases Diagnostic Center of Shaoguan University and Harbin Veterinary Research Institute, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
25
|
Wang Z, Guo M, Kong L, Gao Y, Ma J, Cheng Y, Wang H, Yan Y, Sun J. TLR4 Agonist Combined with Trivalent Protein JointS of Streptococcus suis Provides Immunological Protection in Animals. Vaccines (Basel) 2021; 9:vaccines9020184. [PMID: 33671673 PMCID: PMC7926372 DOI: 10.3390/vaccines9020184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Streptococcus suis (S. suis) serotype 2 (SS2) is the causative agent of swine streptococcosis and can cause severe diseases in both pigs and humans. Although the traditional inactive vaccine can protect pigs from SS2 infection, novel vaccine candidates are needed to overcome its shortcomings. Three infection-associated proteins in S. suis—muramidase-released protein (MRP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and DLD, a novel putative dihydrolipoamide dehydrogenase—have been previously identified by immunoproteomic assays. In this study, the effective immune protection of the recombinant trivalent protein GAPDH-MRP-DLD (JointS) against SS2, SS7, and SS9 was determined in zebrafish. To improve the immune efficacy of JointS, monophosphoryl lipid A (MPLA) as a TLR4 agonist adjuvant, which induces a strong innate immune response in the immune cells of mice and pigs, was combined with JointS to immunize the mice. The results showed that immunized mice could induce the production of a high titer of anti-S. suis antibodies; as a result, 100% of mice survived after SS2 infection. Furthermore, JointS provides good protection against virulent SS2 strain infections in piglets. Given the above, there is potential to develop JointS as a novel subunit vaccine for piglets to prevent infection by SS2 and other S. suis serotypes.
Collapse
Affiliation(s)
- Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Guo
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Licheng Kong
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya Gao
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Henan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.W.); (M.G.); (L.K.); (Y.G.); (J.M.); (Y.C.); (H.W.); (Y.Y.)
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-3420-6926
| |
Collapse
|
26
|
Huang W, Chen Y, Li Q, Jiang H, Lv Q, Zheng Y, Han X, Kong D, Liu P, Jiang Y. LytR plays a role in normal septum formation and contributes to full virulence in Streptococcus suis. Vet Microbiol 2021; 254:109003. [PMID: 33561639 DOI: 10.1016/j.vetmic.2021.109003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Streptococcus suis (S. suis) is a major zoonotic pathogen and is also responsible for variety of diseases in swine. LytR-CpsA-Psr (LCP) family proteins affect the biofilm formation and virulence of some Gram-positive bacteria, but we know nothing about their roles in S. suis. In this study, we constructed the LytR mutant and its revertant strains by natural transformation and verified them by PCR and western blot. We explored the effects of LytR on the cell morphology of S. suis. Transmission electron microscopic analysis showed that the mutant strain displayed aberrant septum placement with no obvious differences in capsular thickness. Crystal violet staining and laser-scanning confocal microscopy both revealed that LytR contributes to the biofilm formation of S. suis. The LytR mutant strain had reduced survival in whole human blood and was more sensitive to killing by polymorphonuclear leukocytes (PMNs). Furthermore, in a mouse infection model, the LytR mutant strain also exhibited significantly attenuated virulence and was more easily cleared in the blood. These results indicate that the LytR protein is involved in septum placement, biofilm formation and required for full virulence of S. suis during infection.
Collapse
Affiliation(s)
- Wenhua Huang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Chen
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Qian Li
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
27
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
28
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
29
|
Yi L, Li J, Fan Q, Mao C, Jin M, Liu Y, Sun L, Grenier D, Wang Y. The otc gene of Streptococcus suis plays an important role in biofilm formation, adhesion, and virulence in a murine model. Vet Microbiol 2020; 251:108925. [PMID: 33181436 DOI: 10.1016/j.vetmic.2020.108925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023]
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen that can cause meningitis, arthritis, pneumonia, and sepsis. It poses a serious threat to the swine industry and public health worldwide. Ornithine carbamoyltransferase (OTC) is involved in the arginine deiminase system. OTC, which is a widely distributed enzyme in microorganisms, mammals, and higher plants, catalyzes the conversion of ornithine to citrulline. The present study showed that the otc gene plays an important role in the pathogenesis of S. suis infections. The ability of an otc-deficient mutant (Δotc) to form a biofilm was significantly reduced compared to the wild-type (WT) strain, as determined by crystal violet staining. Confocal laser scanning microscopy and scanning electron microscopy observations showed that the weakening of biofilm formation by the Δotc strain is related to a decrease in the extracellular matrix. In addition, compared to the WT strain, the Δotc strain had a reduced capacity to adhere to human laryngeal epidermoid carcinoma (HEp-2) cells compared to the WT strain. A real-time PCR analysis showed that the expression of adhesion-related genes by the Δotc strain was also lower than that of the WT strain. The virulence of the Δotc strain was significantly lower than that of the WT strain in a murine infection model. In addition, a histological analysis showed that the pathogenicity of the Δotc strain was lower than that of the WT strain, causing only slight inflammatory lesions in lung, liver, spleen, and kidney tissues. No significant differences were observed between the complemented mutant (CΔotc) and WT strains with respect to biofilm formation, adhesion, gene expression, and virulence. The present study provided evidence that the otc gene plays a pivotal role in the regulation of S. suis adhesion and biofilm formation. It also suggested that the otc gene is indirectly involved in the pathogenesis of S. suis serotype 2 infections.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Manyu Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Yichen Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China.
| |
Collapse
|
30
|
Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 2020; 104:8649-8660. [PMID: 32897417 DOI: 10.1007/s00253-020-10873-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic agent, which seriously impacts the pig industry and human health in various countries. Biofilm formation is likely contributing to the virulence and drug resistance in S. suis. A better knowledge of biofilm formation as well as to biofilm-dependent drug resistance mechanisms in S. suis can be of great significance for the prevention and treatment of S. suis infections. This literature review updates the latest scientific data related to biofilm formation in S. suis and its impact on drug tolerance and resistance.Key points• Biofilm formation is the important reasons for drug resistance of SS infections.• The review includes the regulatory mechanism of SS biofilm formation.• The review includes the drug resistance mechanisms of SS biofilm.
Collapse
|
31
|
Wang Y, Wang Y, Li J, Gong S, Sun L, Grenier D, Li Y. Pdh is involved in the cell division and Normal septation of Streptococcus suis. Microbiol Res 2019; 228:126304. [PMID: 31422235 DOI: 10.1016/j.micres.2019.126304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen that causes major economic losses in the pig industry worldwide. The S. suis cell division process is an integral part of its growth and reproduction, which is controlled by a complex regulatory network. Pyruvate dehydrogenase (PDH), which catalyzes the oxidative decarboxylation of pyruvate to form acetyl-CoA, while reducing NAD + to NADH, plays an important role in energy metabolism. Recently, we reported that pdh regulates virulence by reducing stress tolerance and biofilm formation in S. suis serotype 2. In this study, we found that deletion of the pdh gene in S. suis resulted in abnormal cell chains, plump morphology and abnormal localization of the Z rings, indicating that the knockout mutant is impaired in its ability to divide. In addition, the interaction between FtsZ and PDH in vitro was confirmed by ELISA, and qRT-PCR analysis revealed that the deletion of the pdh gene results in differential expression of the division-related genes ftsZ, ftsK, ftsl, zapA, divIC, pbp1a, rodA, mreD, and sepF. These results indicate that pdh is involved in the normal formation of Z rings and cell morphology during S. suis cell division.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Shenglong Gong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Yi Li
- College of Life Science, Luoyang Normal University, Luoyang, China.
| |
Collapse
|