1
|
Lin H, Wieser A, Zhang J, Regel I, Nieß H, Mayerle J, Gerbes AL, Liu S, Steib CJ. Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells. Cell Mol Life Sci 2024; 82:22. [PMID: 39725773 DOI: 10.1007/s00018-024-05451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 12/28/2024]
Abstract
Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions. Uncharacterized is the role of cPLA2 in HKC activation by bacterial infection. This work aimed to determine the function and mechanism of cPLA2 in gram-negative bacteria (GNB)-induced HKC activation. In this study, we found that Escherichia coli (E. coli)-induced activation of HKCs led to a rise in cPLA2 mRNA and protein expression, where the ERK and NF-κB pathways were concurrently triggered. Luciferase activity of cPLA2' promoters, PLA2G4A promoters, was enhanced with the stimulation of E. coli or co-transfection with STAT3 or RelB in HKCs. E. coli massively boosted the binding activity of STAT3 and RelB to the specific regions of the PLA2G4A promoter as measured by ChIP-qPCR. The E. coli-ERK-STAT3 and E. coli-non-canonical NF-κB-RelB signaling axes were then identified using pathway inhibitors and transcription factors in the rescue experiments during E. coli-induced HKC activation. In conclusion, we discovered that cPLA2 is necessary for E. coli-induced HKC activation, and the underlying mechanism could be the transcriptional regulation of STAT3 and RelB on the PLA2G4A promoter following the ERK and non-canonical NF-κB signaling activation, implying that the regulation of cPLA2 expression via the E. coli-ERK/non-canonical NF-κB-STAT3/RelB signaling axis could be effective for controlling GNB-induced HKC activation in cirrhotic patients.
Collapse
Affiliation(s)
- Hao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Munich, Germany.
| | - Andreas Wieser
- Medical Microbiology and Hospital Epidemiology, Faculty of Medicine, Max von Pettenkofer Institute, LMU Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jiang Zhang
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ivonne Regel
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Munich, Germany
| | - Alexander L Gerbes
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU Munich, Munich, Germany
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Christian J Steib
- Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.
| |
Collapse
|
2
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
3
|
Lin CM, Meng Q, Li YJ, Zhang SX, Luo QX, Dai ZY. Causal associations between intermediate very-low-density lipoprotein cholesterol-to-total lipids ratio and peptic ulcer: A bidirectional Mendelian randomization study. World J Clin Cases 2024; 12:5729-5738. [PMID: 39247748 PMCID: PMC11263067 DOI: 10.12998/wjcc.v12.i25.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Previous epidemiologic investigations have consistently demonstrated a strong association between the ratio of cholesterol to total lipids in medium very-low-density lipoprotein (VLDL) and the occurrence of peptic ulcers (PU). However, the precise causal relationship between these factors remains ambiguous. Consequently, this study aims to elucidate the potential correlation between the ratio of cholesterol to total lipids in medium VLDL and the incidence of peptic ulcer. AIM To investigate the ratio of cholesterol to total lipids in medium very-low-density lipoprotein (VLDL) association with PU via genetic methods, guiding future clinical research. METHODS Genome-wide association study (GWAS) datasets for the ratio of cholesterol to total lipids in intermediate VLDL and peptic ulcer were retrieved from the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk). For the forward Mendelian randomization (MR) analysis, 72 single nucleotide polymorphisms (SNPs) were identified as instrumental variables. These SNPs were selected based on their association with the ratio of cholesterol to total lipids in intermediate VLDL, with peptic ulcer as the outcome variable. Conversely, for the inverse MR analysis, no SNPs were identified with peptic ulcer as the exposure variable and the ratio of cholesterol to total lipids in intermediate VLDL as the outcome. All MR analyses utilized inverse variance weighted (IVW) as the primary analytical method. Additionally, weighted median and MR-Egger methods were employed as supplementary analytical approaches to assess causal effects. Egger regression was used as a supplementary method to evaluate potential directional pleiotropy. Heterogeneity and multiplicity tests were conducted using the leave-one-out method to evaluate result stability and mitigate biases associated with multiple testing. RESULTS The genetically predicted ratio of cholesterol to total lipids in medium VLDL was significantly associated with an elevated risk of peptic ulcer (IVW: OR = 2.557, 95%CI = 1.274-5.132, P = 0.008). However, no causal association of peptic ulcer with the ratio of cholesterol to total lipids in medium VLDL was observed in the inverse Mendelian randomization analysis. CONCLUSION In conclusion, our study reveals a significant association between the ratio of cholesterol to total lipids in medium VLDL and an elevated risk of peptic ulcers. However, further validation through laboratory investigations and larger-scale studies is warranted to strengthen the evidence and confirm the causal relationship between these factors.
Collapse
Affiliation(s)
- Chun-Mei Lin
- Postgraduate Student, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Qian Meng
- Postgraduate Student, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Ying-Jun Li
- Postgraduate Student, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Shuang-Xi Zhang
- Department of Gastroenterology, Guangzhou University of Chinese Medicine Shunde Hospital, Foshan 528300, Guangdong Province, China
| | - Qiong-Xi Luo
- Postgraduate Student, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Zhen-Yu Dai
- Postgraduate Student, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
4
|
Wei BR, Zhao YJ, Cheng YF, Huang C, Zhang F. Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immun Ageing 2024; 21:1. [PMID: 38166953 PMCID: PMC10759355 DOI: 10.1186/s12979-023-00404-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Collapse
Affiliation(s)
- Bang-Rong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Feng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Huang
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
5
|
Lee CT, Tribble GD. Roles of specialized pro-resolving mediators and omega-3 polyunsaturated fatty acids in periodontal inflammation and impact on oral microbiota. FRONTIERS IN ORAL HEALTH 2023; 4:1217088. [PMID: 37559676 PMCID: PMC10409488 DOI: 10.3389/froh.2023.1217088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by dysbiotic dental biofilms. Management of periodontitis is primarily anti-bacterial via mechanical removal of bacterial biofilm. The successful resolution requires wound healing and tissue regeneration, which are not always achieved with these traditional methods. The discovery of specialized pro-resolving mediators (SPMs), a class of lipid mediators that induce the resolution of inflammation and promote local tissue homeostasis, creates another option for the treatment of periodontitis and other diseases of chronic inflammation. In this mini-review, we discuss the host-modulatory effects of SPMs on periodontal tissues and changes in the taxonomic composition of the gut and oral microbiome in the presence of SPMs and SPM precursor lipids. Further research into the relationship between host SPM production and microbiome-SPM modification has the potential to unveil new diagnostic markers of inflammation and wound healing. Expanding this field may drive the discovery of microbial-derived bioactive therapeutics to modulate immune responses.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Chen X, Ishfaq M, Wang J. Baicalin ameliorates Mycoplasma gallisepticum-induced inflammatory injury via inhibiting STIM1-regulated ceramide accumulation in DF-1 cells. Poult Sci 2023; 102:102687. [PMID: 37099879 PMCID: PMC10149409 DOI: 10.1016/j.psj.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is dependent on its host for many nutrients due to the loss of many important metabolic pathways. Ceramide is a sphingolipid that regulates multiple cellular processes in eukaryotic cell. Several studies highlighted the crucial role of ceramide on the pathogenesis of various pathogens. This study aimed to determine whether ceramide plays a crucial role in the pathogenesis of MG. Based on an MG infection model in DF-1 cells, the results revealed that MG infection induced ceramide accumulation in DF-1 cells. Inhibiting the de novo synthesis of ceramide significantly inhibited MG proliferation and inflammatory injury caused by MG in DF-1 cells. Meanwhile, MG infection led to endoplasmic reticulum stress, and pharmacologic inhibition of endoplasmic reticulum stress prevented ceramide accumulation and MG proliferation in DF-1 cells, alleviating the inflammatory injury caused by MG. In addition, MG infection significantly promoted expression level of stromal interaction molecule 1 (STIM1), thus induced calcium overload and oxidative stress. Furthermore, inhibition of STIM1 expression partially restored calcium homeostasis and mitigated oxidative stress, thus alleviated endoplasmic reticulum stress. Importantly, the inflammatory injury caused by MG were partially ameliorated by baicalin treatment (20 µg/mL) through downregulating STIM1 expression. In summary, these results suggests that ceramide accumulation through the de novo pathway plays an important role to promote MG proliferation and baicalin can alleviate MG infection induced inflammatory injury via regulating STIM1-related oxidative stress, endoplasmic reticulum stress and ceramide accumulation in DF-1 cells.
Collapse
|
7
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
8
|
Hsu CY, Yeh JY, Chen CY, Wu HY, Chiang MH, Wu CL, Lin HJ, Chiu CH, Lai CH. Helicobacter pylori cholesterol-α-glucosyltransferase manipulates cholesterol for bacterial adherence to gastric epithelial cells. Virulence 2021; 12:2341-2351. [PMID: 34506250 PMCID: PMC8437457 DOI: 10.1080/21505594.2021.1969171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection is associated with several gastrointestinal diseases, including gastritis, peptic ulcers, and gastric cancer. Infection of cells with H. pylori is dependent on lipid rafts, which are cholesterol-rich microdomains located in the cell membrane. H. pylori cholesterol-α-glucosyltransferase (CGT) catalyzes the conversion of membrane cholesterol to cholesteryl glucosides, which can be incorporated into the bacterial cell wall, facilitating evasion from immune defense and colonization in the host. However, the detailed mechanisms underlying this process remain to be explored. In this study, we discovered for the first time that H. pylori CGT could promote adherence to gastric epithelial cells in a cholesterol-dependent manner. Externalization of cell membrane phosphatidylserine (PS) is crucial for enhancement of binding of H. pylori to cells by CGT and for cytotoxin-associated gene A (CagA)-induced pathogenesis. Furthermore, exogenous cholesterol interferes with the actions of H. pylori CGT to catalyze cellular cholesterol, which impedes bacterial binding to cells and attenuates subsequent inflammation, indicating that the initial attachment of H. pylori to cells is closely dependent on host cholesterol. These results provide evidence that CGT contributes to H. pylori infectivity and it may serve as a key target for the treatment of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Chung-Yao Hsu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Yin Yeh
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ya Chen
- Department of Laboratory Medicine, Taichung Veterans General Hospital Chiayi Branch, Chiayi, Taiwan
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang-Ho Hospital, New Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
The Role of Lipids in Legionella-Host Interaction. Int J Mol Sci 2021; 22:ijms22031487. [PMID: 33540788 PMCID: PMC7867332 DOI: 10.3390/ijms22031487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Legionella are Gram-stain-negative rods associated with water environments: either natural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires' disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)-a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plasticity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane. Unusual in terms of the structure and function of individual LPS regions, it makes an important contribution to the antigenicity and pathogenicity of Legionella bacteria.
Collapse
|
11
|
Price CT, Abu Kwaik Y. Evolution and Adaptation of Legionella pneumophila to Manipulate the Ubiquitination Machinery of Its Amoebae and Mammalian Hosts. Biomolecules 2021; 11:biom11010112. [PMID: 33467718 PMCID: PMC7830128 DOI: 10.3390/biom11010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin pathway is highly conserved across the eukaryotic domain of life and plays an essential role in a plethora of cellular processes. It is not surprising that many intracellular bacterial pathogens often target the essential host ubiquitin pathway. The intracellular bacterial pathogen Legionella pneumophila injects into the host cell cytosol multiple classes of classical and novel ubiquitin-modifying enzymes that modulate diverse ubiquitin-related processes in the host cell. Most of these pathogen-injected proteins, designated as effectors, mimic known E3-ubiquitin ligases through harboring F-box or U-box domains. The classical F-box effector, AnkB targets host proteins for K48-linked polyubiquitination, which leads to excessive proteasomal degradation that is required to generate adequate supplies of amino acids for metabolism of the pathogen. In contrast, the SidC and SdcA effectors share no structural similarity to known eukaryotic ligases despite having E3-ubiquitin ligase activity, suggesting that the number of E3-ligases in eukaryotes is under-represented. L. pneumophila also injects into the host many novel ubiquitin-modifying enzymes, which are the SidE family of effectors that catalyze phosphoribosyl-ubiquitination of serine residue of target proteins, independently of the canonical E1-2-3 enzymatic cascade. Interestingly, the environmental bacterium, L. pneumophila, has evolved within a diverse range of amoebal species, which serve as the natural hosts, while accidental transmission through contaminated aerosols can cause pneumonia in humans. Therefore, it is likely that the novel ubiquitin-modifying enzymes of L. pneumophila were acquired by the pathogen through interkingdom gene transfer from the diverse natural amoebal hosts. Furthermore, conservation of the ubiquitin pathway across eukaryotes has enabled these novel ubiquitin-modifying enzymes to function similarly in mammalian cells. Studies on the biological functions of these effectors are likely to reveal further novel ubiquitin biology and shed further lights on the evolution of ubiquitin.
Collapse
Affiliation(s)
- Christopher T.D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY 40202, USA
- Correspondence:
| |
Collapse
|