1
|
Rai MN, Rai R. H 3K 4 Methylation and Demethylation in Fungal Pathogens: The Epigenetic Toolbox for Survival and Adaptation in the Host. Pathogens 2024; 13:1080. [PMID: 39770340 PMCID: PMC11728789 DOI: 10.3390/pathogens13121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Pathogenic fungi represent a diverse group of eukaryotic microorganisms that significantly impact human health and agriculture. In recent years, the role of epigenetic modifications, particularly histone modifications, in fungal pathobiology has emerged as a prominent area of interest. Among these modifications, methylation of histone H3 at lysine-4 (H3K4) has garnered considerable attention for its implications in regulating gene expression associated with diverse cellular processes. A body of literature has uncovered the pivotal roles of H3K4 methylation in multiple biological processes crucial for pathogenic adaptation in a wide range of fungal pathogens of humans and food crops. This review delves into the recent advancements in understanding the impact of H3K4 methylation/demethylation on fungal pathogenesis. We explore the roles of H3K4 methylation in various cellular processes, including fungal morphogenesis and development, genome stability and DNA repair, metabolic adaptation, cell wall maintenance, biofilm formation, antifungal drug resistance, and virulence. We also discuss the conservation of H3K4 methylation regulators and their potential as therapeutic targets to prevent fungal diseases. Collectively, this review underscores the intricate links between H3K4 methylation, fungal pathogenesis, and potential avenues for novel antifungal strategies.
Collapse
Affiliation(s)
- Maruti Nandan Rai
- College of Agricultural, Consumer, and Environmental Sciences (ACES), University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rikky Rai
- Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| |
Collapse
|
2
|
Park J, Park S, Kim J, Cho YJ, Lee JS. Ctr9 promotes virulence of Candida albicans by regulating methionine metabolism. Virulence 2024; 15:2405616. [PMID: 39316797 PMCID: PMC11423685 DOI: 10.1080/21505594.2024.2405616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans, a part of normal flora, is an opportunistic fungal pathogen and causes severe health issues in immunocompromised patients. Its pathogenicity is intricately linked to the transcriptional regulation of its metabolic pathways. Paf1 complex (Paf1C) is a crucial transcriptional regulator that is highly conserved in eukaryotes. The objective of this study was to explore the role of Paf1C in the metabolic pathways and how it influences the pathogenicity of C. albicans. Paf1C knockout mutant strains of C. albicans (ctr9Δ/Δ, leo1Δ/Δ, and cdc73Δ/Δ) were generated using the CRISPR-Cas9 system. To investigate the effect of Paf1C on pathogenicity, macrophage interaction assays and mouse survival tests were conducted. The growth patterns of the Paf1C knockout mutants were analyzed through spotting assays and growth curve measurements. Transcriptome analysis was conducted under yeast conditions (30°C without serum) and hyphal conditions (37°C with 10% FBS), to further elucidate the role of Paf1C in the pathogenicity of C. albicans. CTR9 deletion resulted in the attenuation of C. albicans virulence, in macrophage and mouse models. Furthermore, we confirmed that the reduced virulence of the ctr9Δ/Δ mutant can be attributed to a decrease in C. albicans cell abundance. Moreover, transcriptome analysis revealed that metabolic processes required for cell proliferation are impaired in ctr9Δ/Δ mutant. Notably, CTR9 deletion led to the downregulation of methionine biosynthetic genes and the cAMP-PKA signaling pathway-related hypha essential genes, which are pivotal for virulence. Our results suggest that Ctr9-regulated methionine metabolism is a crucial factor for determining C. albicans pathogenicity.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
4
|
Gregor JB, Gutierrez-Schultz VA, Hoda S, Baker KM, Saha D, Burghaze MG, Briggs SD. Expanding the toolkit for genetic manipulation and discovery in Candida species using a CRISPR ribonucleoprotein-based approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545382. [PMID: 37398038 PMCID: PMC10312801 DOI: 10.1101/2023.06.16.545382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The World Health Organization recently published the first list of priority fungal pathogens highlighting multiple Candida species including C. glabrata, C. albicans, and C. auris. The use of CRISPR-Cas9 and auxotrophic C. glabrata and C. albicans strains have been instrumental in the study of these fungal pathogens. Dominant drug resistance cassettes are also critical for genetic manipulation and eliminate the concern of altered virulence when using auxotrophic strains. However, genetic manipulation has been mainly limited to the use of two drug resistance cassettes, NatMX and HphMX. Using an in vitro assembled CRISPR-Cas9 ribonucleoprotein (RNP)-based system and 130-150 bp homology regions for directed repair, we expand the drug resistance cassettes for Candida to include KanMX and BleMX, commonly used in S. cerevisiae. As a proof of principle, we demonstrated efficient deletion of ERG genes using KanMX and BleMX. We also showed the utility of the CRISPR-Cas9 RNP system for generating double deletions of genes in the ergosterol pathway and endogenous epitope tagging of ERG genes using an existing KanMX cassette. This indicates that CRISPR-Cas9 RNP can be used to repurpose the S. cerevisiae toolkit. Furthermore, we demonstrated that this method is effective at deleting ERG3 in C. auris using a codon optimized BleMX cassette and effective at deleting the epigenetic factor, SET1, in C. albicans using a recyclable SAT1. Using this expanded toolkit, we discovered new insights into fungal biology and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D. Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
5
|
Liu R, Chen X, Zhao F, Jiang Y, Lu Z, Ji H, Feng Y, Li J, Zhang H, Zheng J, Zhang J, Zhao Y. The COMPASS Complex Regulates Fungal Development and Virulence through Histone Crosstalk in the Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2023; 9:672. [PMID: 37367608 DOI: 10.3390/jof9060672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.
Collapse
Affiliation(s)
- Ruoyan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixuan Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenguo Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Heng Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Lysine Methyltransferase EhPKMT2 Is Involved in the In Vitro Virulence of Entamoeba histolytica. Pathogens 2023; 12:pathogens12030474. [PMID: 36986396 PMCID: PMC10058465 DOI: 10.3390/pathogens12030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Lysine methylation, a posttranslational modification catalyzed by protein lysine methyltransferases (PKMTs), is involved in epigenetics and several signaling pathways, including cell growth, cell migration and stress response, which in turn may participate in virulence of protozoa parasites. Entamoeba histolytica, the etiologic agent of human amebiasis, has four PKMTs (EhPKMT1 to EhPKMT4), but their role in parasite biology is unknown. Here, to obtain insight into the role of EhPKMT2, we analyzed its expression level and localization in trophozoites subjected to heat shock and during phagocytosis, two events that are related to amoeba virulence. Moreover, the effect of EhPKMT2 knockdown on those activities and on cell growth, migration and cytopathic effect was investigated. The results indicate that this enzyme participates in all these cellular events, suggesting that it could be a potential target for development of novel therapeutic strategies against amebiasis.
Collapse
|
7
|
Xu X, Chen Y, Li B, Tian S. Histone H3K4 Methyltransferase PeSet1 Regulates Colonization, Patulin Biosynthesis, and Stress Responses of Penicillium expansum. Microbiol Spectr 2023; 11:e0354522. [PMID: 36633412 PMCID: PMC9927251 DOI: 10.1128/spectrum.03545-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
Fruit blue mold disease and patulin contamination caused by Penicillium expansum lead to huge economic losses and food safety concerns worldwide. Many genes have been proven to be involved in the regulation of pathogenic and toxigenic processes of P. expansum. Histone H3 lysine 4 (H3K4) methylation is well recognized for its association with chromatin regulation and gene transcription. However, it is not clear whether H3K4 methylation is related to infection and patulin biosynthesis in Penicillium. Here, we characterized PeSet1, which is responsible for H3K4me1/me2/me3 in P. expansum. The deletion of PeSet1 caused severe defects in hyphal growth, conidiation, colonization, patulin biosynthesis, and stress responses. Moreover, we demonstrated that PeSet1 is involved in the regulation of patulin biosynthesis by mediating the expression of patulin cluster genes and crucial global regulatory factors. Likewise, PeSet1 positively regulated key genes in β-1,3-glucan biosynthesis and the reactive oxygen species scavenging process to modulate cell wall integrity and oxidative stress responses, respectively. Collectively, we have proven for the first time the function of Set1 in patulin biosynthesis and the crucial role of Set1 in colonization and stress responses in P. expansum. IMPORTANCE Penicillium expansum is one of the most important plant fungal pathogens, which not only causes blue mold rot in various fruits, leading to huge decay losses, but also produces mycotoxin patulin, posing a threat to human health. Both pathogenesis and patulin biosynthesis in P. expansum are regulated by complex and sophisticated networks. We focused on the epigenetic modification and identified a conserved histone H3K4 methyltransferase PeSet1 in P. expansum. Our work revealed the important role of PeSet1 in growth, development, colonization, patulin production, and stress responses of P. expansum. In particular, we originally described the regulation of Set1 on patulin biosynthetic pathway. These findings will provide new targets for the prevention and control of blue mold disease and patulin contamination.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, The Innovative Academy of Seed Design, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Key Laboratory of Plant Resources, The Innovative Academy of Seed Design, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, The Innovative Academy of Seed Design, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, The Innovative Academy of Seed Design, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Meng S, Huang S, Liu J, Gai Y, Li M, Duan S, Zhang S, Sun X, Yang Q, Wang Y, Xu K, Ma H. Histone Methylation Is Required for Virulence, Conidiation, and Multi-Stress Resistance of Alternaria alternata. Front Microbiol 2022; 13:924476. [PMID: 35783406 PMCID: PMC9245015 DOI: 10.3389/fmicb.2022.924476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Histone methylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). This study determined the function of 5 HMTs (AaDot1, AaHMT1, AaHnrnp, AaSet1, and AaSet2) and 1 HDMs (AaGhd2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. The vegetative growth, conidiation, and pathogenicity of ∆AaSet1 and ∆AaSet2 were severely inhibited indicating that AaSet1 and AaSet2 play critical roles in cell development in A. alternata. Multiple stresses analysis revealed that both AaSet1 and AaSet2 were involved in the adaptation to cell wall interference agents and osmotic stress. Meanwhile, ∆AaSet1 and ∆AaSet2 displayed serious vegetative growth defects in sole carbon source medium, indicating that AaSet1 and AaSet2 play an important role in carbon source utilization. In addition, ∆AaSet2 colony displayed white in color, while the wild-type colony was dark brown, indicating AaSet2 is an essential gene for melanin biosynthesis in A. alternata. AaSet2 was required for the resistance to oxidative stress. On the other hand, all of ∆AaDot1, ∆AaHMT1, and ∆AaGhd2 mutants displayed wild-type phenotype in vegetative growth, multi-stress resistance, pathogenicity, carbon source utilization, and melanin biosynthesis. To explore the regulatory mechanism of AaSet1 and AaSet2, RNA-seq of these mutants and wild-type strain was performed. Phenotypes mentioned above correlated well with the differentially expressed genes in ∆AaSet1 and ∆AaSet2 according to the KEGG and GO enrichment results. Overall, our study provides genetic evidence that defines the central role of HMTs and HDMs in the pathological and biological functions of A. alternata.
Collapse
Affiliation(s)
- Shuai Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jinhua Liu
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuting Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Qi Yang
- Linyi Inspection and Testing Center, Linyi, China
| | - Yuchun Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|