1
|
Rahman MM, Zamakhaeva S, Rush JS, Chaton CT, Kenner CW, Hla YM, Tsui HCT, Uversky VN, Winkler ME, Korotkov KV, Korotkova N. Glycosylation of serine/threonine-rich intrinsically disordered regions of membrane-associated proteins in streptococci. Nat Commun 2025; 16:4011. [PMID: 40301326 PMCID: PMC12041528 DOI: 10.1038/s41467-025-58692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Here, our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
2
|
Rahman MM, Zamakhaeva S, Rush JS, Chaton CT, Kenner CW, Hla YM, Tsui HCT, Uversky VN, Winkler ME, Korotkov KV, Korotkova N. Glycosylation of serine/threonine-rich intrinsically disordered regions of membrane-associated proteins in streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.05.592596. [PMID: 38746434 PMCID: PMC11092751 DOI: 10.1101/2024.05.05.592596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
Collapse
Affiliation(s)
- Mohammad M. Rahman
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey S. Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T. Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Cameron W. Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | | | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Agbavor C, Torres M, Inniss NL, Latimer S, Minasov G, Shuvalova L, Wawrzak Z, Borek D, Otwinowski Z, Stogios PJ, Savchenko A, Anderson WF, Satchell KJF, Cahoon LA. Structural analysis of extracellular ATP-independent chaperones of streptococcal species and protein substrate interactions. mSphere 2025; 10:e0107824. [PMID: 39878509 PMCID: PMC11853100 DOI: 10.1128/msphere.01078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species. The extracellular parvulin-type PPIase, PrsA in Streptococcus pneumoniae and Streptococcus mutans maintain dimeric crystal structures reminiscent of folding catalysts that consist of two domains, a PPIase and foldase domain. Structural comparison of the two cyclophilin-like extracellular chaperones from S. pneumoniae and Streptococcus pyogenes with other cyclophilins demonstrates that this group of cyclophilin-like chaperones has novel structural appendages formed by 9- and 24-residue insertions. Furthermore, we demonstrate that deletion of prsA and slrA genes impairs the secretion of the cholesterol-dependent pore-forming toxin, pneumolysin in S. pneumoniae. Using protein pull-down and biophysical assays, we demonstrate a direct interaction between PrsA and SlrA with Ply. Then, we developed chaperone-assisted folding assays that show that the S. pneumoniae PrsA and SlrA extracellular chaperones accelerate pneumolysin folding. In addition, we demonstrate that SlrA and, for the first time, S. pyogenes PpiA exhibit PPIase activity and can bind the immunosuppressive drug, cyclosporine A. Altogether, these findings suggest a mechanistic role for streptococcal PPIase chaperones in the activity and folding of secreted virulence factors such as pneumolysin. IMPORTANCE Streptococcal species are a leading cause of lower respiratory infections that annually affect millions of people worldwide. During infection, streptococcal species secrete a medley of virulence factors that allow the bacteria to colonize and translocate to deeper tissues. In many gram-positive bacteria, virulence factors are secreted from the cytosol across the bacterial membrane in an unfolded state. The bacterial membrane-cell wall interface is exposed to the potentially harsh extracellular environment, making it difficult for native virulence factors to fold before being released into the host. ATP-independent PPIase-type chaperones, PrsA and SlrA, are thought to facilitate folding and stabilization of several unfolded proteins to promote the colonization and spread of streptococci. Here, we present crystal structures of the molecular chaperones of PrsA and SlrA homologs from streptococcal species. We provide evidence that the Streptococcus pyogenes SlrA homolog, PpiA, has PPIase activity and binds to cyclosporine A. In addition, we show that Streptococcus pneumoniae PrsA and SlrA directly interact and fold the cholesterol-dependent pore-forming toxin and critical virulence determinant, pneumolysin.
Collapse
Affiliation(s)
- Charles Agbavor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madeline Torres
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole L. Inniss
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Latimer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Minasov
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ludmilla Shuvalova
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - Dominika Borek
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter J. Stogios
- Biozone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Biozone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laty A. Cahoon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Yang C, Ma J, Zhou H, Yang J, Pu J, Lu S, Jin D, Liu L, Dong K, Xu J. Genomic Characterization and Comparative Analysis of Streptococcus zhangguiae sp. nov. Isolated from the Respiratory Tract of Marmota Himalayana. J Microbiol 2024; 62:951-963. [PMID: 39495471 DOI: 10.1007/s12275-024-00177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
Two Gram-stain-positive, oxidase-negative, non-motile, facultative anaerobic, α-hemolytic, coccus-shaped bacteria (zg-86T and zg-70) were isolated from the respiratory tracts of marmots (Marmota Himalayana) on the Qinghai-Tibet Plateau of China. Phylogenetic analysis of the 16S rRNA gene and 545 core genes revealed that these two strains belong to the Streptococcus genus. These strains were most closely related to Streptococcus respiraculi HTS25T, Streptococcus cuniculi CCUG 65085T, and Streptococcus marmotae HTS5T. The average nucleotide identity (ANI) and digital DNA‒DNA hybridization (dDDH) were below the threshold for species delineation. The predominant cellular fatty acids (CFAs) in this novel species were C16:0, C18:0, and C18:1ω9c, whereas the primary polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phosphoglycolipid (PGL). The optimal growth conditions for the strains were 37 °C, pH 7.0, and 0.5% (w/v) NaCl on brain-heart infusion (BHI) agar supplemented with 5% defibrinated sheep blood. Comparative genomics analyses revealed the potential pathogenicity of strain zg-86T through comparisons with suis subclade strains in terms of virulence factors, pathogen-host interactions (PHIs) and mobile genetic factors (MGEs). Based on the phenotypic characteristics and phylogenetic analyses, we propose that these two isolates represent novel species in the genus Streptococcus, for which the names Streptococcus zhangguiae sp. nov. (the type strain zg-86T=GDMCC 1.1758T=JCM 34273T) is proposed.
Collapse
Affiliation(s)
- Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiajia Ma
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dong Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050010, Hebei, People's Republic of China
| | - Kui Dong
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China.
- Shanxi Province Key Laboratory of Ophthalmology, Shanxi Eye Hospital, Taiyuan, People's Republic of China.
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, People's Republic of China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Center for Reverse Etiology, Shanxi Medical University, Taiyuan, People's Republic of China.
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Lin MH, Liu CC, Lu CW, Shu JC. Staphylococcus aureus foldase PrsA contributes to the folding and secretion of protein A. BMC Microbiol 2024; 24:108. [PMID: 38566014 PMCID: PMC10986000 DOI: 10.1186/s12866-024-03268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Mei-Hui Lin
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| | - Chao-Chin Liu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan
| | - Chiao-Wen Lu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan
| | - Jwu-Ching Shu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| |
Collapse
|
6
|
Lai CY, Xie JX, Lai MC, Wu ZY, Lin JS, Huang YT, Chi CY, Chiang-Ni C, Walker MJ, Chang YC. Conserved molecular chaperone PrsA stimulates protective immunity against group A Streptococcus. NPJ Vaccines 2024; 9:46. [PMID: 38409165 PMCID: PMC10897429 DOI: 10.1038/s41541-024-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Group A Streptococcus (GAS) is a significant human pathogen that poses a global health concern. However, the development of a GAS vaccine has been challenging due to the multitude of diverse M-types and the risk of triggering cross-reactive immune responses. Our previous research has identified a critical role of PrsA1 and PrsA2, surface post-translational molecular chaperone proteins, in maintaining GAS proteome homeostasis and virulence traits. In this study, we aimed to further explore the potential of PrsA1 and PrsA2 as vaccine candidates for preventing GAS infection. We found that PrsA1 and PrsA2 are highly conserved among GAS isolates, demonstrating minimal amino acid variation. Antibodies specifically targeting PrsA1/A2 showed no cross-reactivity with human heart proteins and effectively enhanced neutrophil opsonophagocytic killing of various GAS serotypes. Additionally, passive transfer of PrsA1/A2-specific antibodies conferred protective immunity in infected mice. Compared to alum, immunization with CFA-adjuvanted PrsA1/A2 induced higher levels of Th1-associated IgG isotypes and complement activation and provided approximately 70% protection against invasive GAS challenge. These findings highlight the potential of PrsA1 and PrsA2 as universal vaccine candidates for the development of an effective GAS vaccine.
Collapse
Affiliation(s)
- Chien-Yu Lai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jia-Xun Xie
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Meng-Chih Lai
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Yu Chi
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, 300, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Mark J Walker
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
7
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
8
|
Li HK, Zhi X, Vieira A, Whitwell HJ, Schricker A, Jauneikaite E, Li H, Yosef A, Andrew I, Game L, Turner CE, Lamagni T, Coelho J, Sriskandan S. Characterization of emergent toxigenic M1 UK Streptococcus pyogenes and associated sublineages. Microb Genom 2023; 9:mgen000994. [PMID: 37093716 PMCID: PMC10210942 DOI: 10.1099/mgen.0.000994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023] Open
Abstract
Streptococcus pyogenes genotype emm1 is a successful, globally distributed epidemic clone that is regarded as inherently virulent. An emm1 sublineage, M1UK, that produces increased levels of SpeA toxin was associated with increased scarlet fever and invasive infections in England in 2015/2016. Defined by 27 SNPs in the core genome, M1UK is now dominant in England. To more fully characterize M1UK, we undertook comparative transcriptomic and proteomic analyses of M1UK and contemporary non-M1UK emm1 strains (M1global). Just seven genes were differentially expressed by M1UK compared with contemporary M1global strains. In addition to speA, five genes in the operon that includes glycerol dehydrogenase were upregulated in M1UK (gldA, mipB/talC, pflD, and phosphotransferase system IIC and IIB components), while aquaporin (glpF2) was downregulated. M1UK strains have a stop codon in gldA. Deletion of gldA in M1global abrogated glycerol dehydrogenase activity, and recapitulated upregulation of gene expression within the operon that includes gldA, consistent with a feedback effect. Phylogenetic analysis identified two intermediate emm1 sublineages in England comprising 13/27 (M113SNPs) and 23/27 SNPs (M123SNPs), respectively, that had failed to expand in the population. Proteomic analysis of invasive strains from the four phylogenetic emm1 groups highlighted sublineage-specific changes in carbohydrate metabolism, protein synthesis and protein processing; upregulation of SpeA was not observed in chemically defined medium. In rich broth, however, expression of SpeA was upregulated ~10-fold in both M123SNPs and M1UK sublineages, compared with M113SNPs and M1global. We conclude that stepwise accumulation of SNPs led to the emergence of M1UK. While increased expression of SpeA is a key indicator of M1UK and undoubtedly important, M1UK strains have outcompeted M123SNPs and other emm types that produce similar or more superantigen toxin. We speculate that an accumulation of adaptive SNPs has contributed to a wider fitness advantage in M1UK on an inherently successful emm1 streptococcal background.
Collapse
Affiliation(s)
- Ho Kwong Li
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Xiangyun Zhi
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Ana Vieira
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amelia Schricker
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Elita Jauneikaite
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- School of Public Health, Imperial College London, London, UK
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ahmed Yosef
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ivan Andrew
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Claire E. Turner
- The Florey Institute, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Theresa Lamagni
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Centre for Infections, UK Health Security Agency, London, UK
| | - Juliana Coelho
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Centre for Infections, UK Health Security Agency, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology & Infection (CMBI), Imperial College London, London, UK
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
9
|
The Phosphatase Bph and Peptidyl-Prolyl Isomerase PrsA Are Required for Gelatinase Expression and Activity in Enterococcus faecalis. J Bacteriol 2022; 204:e0012922. [PMID: 35657705 DOI: 10.1128/jb.00129-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a common commensal bacterium in the gastrointestinal tract as well as a frequent nosocomial pathogen. The secreted metalloprotease gelatinase (GelE) is an important E. faecalis virulence factor that contributes to numerous cellular activities, such as autolysis, biofilm formation, and biofilm-associated antibiotic resistance. Expression of gelE has been extensively studied and is regulated by the Fsr quorum sensing system. Here, we identify two additional factors regulating gelatinase expression and activity in E. faecalis OG1RF. The Bph phosphatase is required for expression of gelE in an Fsr-dependent manner. Additionally, the membrane-anchored protein foldase PrsA is required for GelE activity, but not fsr or gelE gene expression. Disrupting prsA also leads to increased antibiotic sensitivity in biofilms independent of the loss of GelE activity. Together, our results expand the model for gelatinase production in E. faecalis, which has important implications for fundamental studies of GelE function in Enterococcus and also E. faecalis pathogenesis. IMPORTANCE In Enterococcus faecalis, gelatinase (GelE) is a virulence factor that is also important for biofilm formation and interactions with other microbes as well as the host immune system. The long-standing model for GelE production is that the Fsr quorum sensing system positively regulates expression of gelE. Here, we update that model by identifying two additional factors that contribute to gelatinase production. The biofilm-associated Bph phosphatase regulates the expression of gelE through Fsr, and the peptidyl-prolyl isomerase PrsA is required for production of active GelE through an Fsr-independent mechanism. This provides important insight into how regulatory networks outside of the fsr locus coordinate expression of gelatinase.
Collapse
|