1
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
2
|
Davuluri S, Chung L, Lood C. Calcinosis in dermatomyositis. Curr Opin Rheumatol 2024; 36:453-458. [PMID: 39120537 PMCID: PMC11451928 DOI: 10.1097/bor.0000000000001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
PURPOSE OF REVIEW To provide the most recent literature on our understanding behind the pathogenesis and the treatment of calcinosis in dermatomyositis. RECENT FINDINGS Early diagnosis and controlling the overall disease activity are cornerstones to prevent calcinosis in juvenile dermatomyositis. Observational cohort studies showed that prolonged state of inflammation and features of vascular dysfunction like digital ulcers and abnormal nailfold capillaries are associated with calcinosis. Neutrophil activation and mitochondrial dysfunction have recently emerged as potential mechanistic pathways involved in calcinosis pathogenesis. Few recent case series have alluded to the efficacy of topical and intralesional sodium thiosulfate, while JAK inhibitors appear to be newer promising therapy in juvenile dermatomyositis. SUMMARY Calcinosis in dermatomyositis consists of deposition of insoluble calcium compounds in the skin and other tissues. It is prevalent in up to 75% of patients with juvenile dermatomyositis and up to 20% in adult dermatomyositis. While it leads to significant patient morbidity, we do not yet understand the pathogenesis in its entirety. Surgical excision although palliative is the mainstay of treatment and should be offered to patients. All available treatment options are only based on very low level of evidence.
Collapse
Affiliation(s)
| | - Lorinda Chung
- Stanford School of Medicine & Palo Alto VA Healthcare System, Division of Immunology & Rheumatology, Palo Alto, California
| | - Christian Lood
- University of Washington, Division of Rheumatology, Seattle, Washington, USA
| |
Collapse
|
3
|
Chengzhi C, Jian L, Yuedi H, Yang L, Yiming C, Dan H. Application of neutrophil to lymphocyte ratio in ankylosing spondylitis: Based on bibliometric and visualization analysis. Medicine (Baltimore) 2024; 103:e38364. [PMID: 39259110 PMCID: PMC11142797 DOI: 10.1097/md.0000000000038364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 09/12/2024] Open
Abstract
Ankylosing spondylitis (AS) as a autoimmune disease involves inflammatory responses in the development of the disease, often causing changes in the neutrophil to lymphocyte ratio (NLR). In the past few decades, research on the relationship between NLR and AS has generally shown an upward trend. This study adopts the bibliometrics method to analyze the development trend, frontier, and hotspots of global research in this field in the past 2 decades. By searching for publications in the SCI-Expanded edition of the Web of Science Core Collection, the information of literature published between 2000 and 2023 is recorded. Based on the VOSviewer, CiteSpace and Excel, bibliometric analysis, and visualization analysis are conducted on the overall distribution of annual output, leading countries, active institutions, journals, authors, co-cited references, and keywords. Through retrieving and screening, a total of 1654 papers are obtained for analysis. In the past 2 decades, the number of publications related to this field has shown an increasing trend. The United States has the highest Hirsch index (H-index) and publication volume. The most productive institution is Harvard University, while the H-index of the University of Milan in Italy is far ahead. Frontiers in Immunology is the institution with the highest output. The H-index of the Annals of the Rheumatic holds the top position. This study has uncovered the main emphasis on NLR in AS research and has provided clarification regarding the value of NLR as a biomarker for immune inflammatory response in the diagnosis and prognosis of AS.
Collapse
Affiliation(s)
- Cong Chengzhi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, China
| | - Liu Jian
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hu Yuedi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Li Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, China
| | - Chen Yiming
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, China
| | - Huang Dan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Zhou Z, Zeng X, Liao J, Dong X, Deng Y, Wang Y, Zhou M. Immune Characteristic Genes and Neutrophil Immune Transformation Studies in Severe COVID-19. Microorganisms 2024; 12:737. [PMID: 38674681 PMCID: PMC11052247 DOI: 10.3390/microorganisms12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| |
Collapse
|
5
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
McAllister MJ, Hall R, Whelan RJ, Fischer LJ, Chuah CS, Cartlidge PD, Drury B, Rutherford DG, Duffin RM, Cartwright JA, Dorward DA, Rossi AG, Ho GT. Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease. CROHN'S & COLITIS 360 2024; 6:otae003. [PMID: 38352118 PMCID: PMC10862654 DOI: 10.1093/crocol/otae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 02/16/2024] Open
Abstract
Background Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.
Collapse
Affiliation(s)
- Milly J McAllister
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rebecca Hall
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Robert J Whelan
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Lena J Fischer
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Cher S Chuah
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter D Cartlidge
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Broc Drury
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan G Rutherford
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Rodger M Duffin
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jennifer A Cartwright
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - David A Dorward
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Adriano G Rossi
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Gwo-tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
7
|
Shoraka S, Samarasinghe AE, Ghaemi A, Mohebbi SR. Host mitochondria: more than an organelle in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1228275. [PMID: 37692170 PMCID: PMC10485703 DOI: 10.3389/fcimb.2023.1228275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Memphis, TN, United States
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Li Z, Zhang Z, Zhang Z, Wang Z, Li H. Cognitive impairment after long COVID-19: current evidence and perspectives. Front Neurol 2023; 14:1239182. [PMID: 37583958 PMCID: PMC10423939 DOI: 10.3389/fneur.2023.1239182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is a respiratory infectious disease. While most patients recover after treatment, there is growing evidence that COVID-19 may result in cognitive impairment. Recent studies reveal that some individuals experience cognitive deficits, such as diminished memory and attention, as well as sleep disturbances, suggesting that COVID-19 could have long-term effects on cognitive function. Research indicates that COVID-19 may contribute to cognitive decline by damaging crucial brain regions, including the hippocampus and anterior cingulate cortex. Additionally, studies have identified active neuroinflammation, mitochondrial dysfunction, and microglial activation in COVID-19 patients, implying that these factors may be potential mechanisms leading to cognitive impairment. Given these findings, the possibility of cognitive impairment following COVID-19 treatment warrants careful consideration. Large-scale follow-up studies are needed to investigate the impact of COVID-19 on cognitive function and offer evidence to support clinical treatment and rehabilitation practices. In-depth neuropathological and biological studies can elucidate precise mechanisms and provide a theoretical basis for prevention, treatment, and intervention research. Considering the risks of the long-term effects of COVID-19 and the possibility of reinfection, it is imperative to integrate basic and clinical research data to optimize the preservation of patients' cognitive function and quality of life. This integration will also offer valuable insights for responding to similar public health events in the future. This perspective article synthesizes clinical and basic evidence of cognitive impairment following COVID-19, discussing potential mechanisms and outlining future research directions.
Collapse
Affiliation(s)
- Zhitao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuoya Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyong Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|