1
|
Wang F, Hu Y, Chen H, Chen L, Liu Y. Exploring the roles of microorganisms and metabolites in the 30-year aging process of the dried pericarps of Citrus reticulata 'Chachi' based on high-throughput sequencing and comparative metabolomics. Food Res Int 2023; 172:113117. [PMID: 37689884 DOI: 10.1016/j.foodres.2023.113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
GuangChenpi (GCP), the dried pericarps of Citrus reticulata 'Chachi', has been consumed daily as a food and dietary supplement in China for centuries. Its health benefits are generally recognized to be dependent on storage time. However, the specific roles of microorganisms and metabolites during long-term storage are still unclear. In this study, comparative metabolomics and high-throughput sequencing techniques were used to investigate the effects of co-existing microorganisms on the metabolites in GCP stored from 1 to 30 years. In total, 386 metabolites were identified and characterized. Most compounds were flavonoids (37%), followed by phenolic acids (20%). Seventeen differentially upregulated metabolites were identified as potential key metabolites in GCP, and 8 of them were screened out as key active ingredients by Venn diagram comparative analyses and verified by network pharmacology and molecular docking. In addition, long-term storage could promote the accumulation of secondary metabolites. Regarding the GCP microbiota, Xeromyces dominated the whole 30-year aging process.Moreover, Spearman correlation analysis indicated that Bacillus thuringiensis and Xeromyces bisporus, the dominant bacterial and fungal species, were strongly associated with the key active metabolites. Our results suggested that the change of active ingredients caused by the dominant microbial is one of the mechanisms affecting the GCP aging process. Our study provides novel functional insights and research perspectives on microorganism-associated metabolite changes that may improve the GCP aging process.
Collapse
Affiliation(s)
- Fu Wang
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yuan Hu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Youping Liu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Kumar H, Bhardwaj K, Nepovimova E, Kuča K, Singh Dhanjal D, Bhardwaj S, Bhatia SK, Verma R, Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1334. [PMID: 32650608 PMCID: PMC7408424 DOI: 10.3390/nano10071334] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Daljeet Singh Dhanjal
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.)
| | - Sonali Bhardwaj
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.)
| | - Shashi Kant Bhatia
- Biotransformation and Biomaterials Laboratory, Department of Microbial Engineering, Konkuk University, Seoul 05029, Korea;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| |
Collapse
|
3
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
4
|
Matic I, Revandkar A, Chen J, Bisio A, Dall'Acqua S, Cocetta V, Brun P, Mancino G, Milanese M, Mattei M, Montopoli M, Alimonti A. Identification of Salvia haenkei as gerosuppressant agent by using an integrated senescence-screening assay. Aging (Albany NY) 2017; 8:3223-3240. [PMID: 27922821 PMCID: PMC5270665 DOI: 10.18632/aging.101076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a stable cell cycle arrest that is the causative process of aging. The PI3K/AKT/mTOR pathway is implicated in the control of cellular senescence and inhibitors of this pathway have been successfully used for life span prolongation experiments in mammals. PTEN is the major regulator of the PI3K/AKT/mTOR pathway and loss of PTEN promotes a senescence response termed PICS. Here we report a novel-screening assay, for the identification of compounds that block different types of senescence response. By testing a library of more than 3000 natural and chemical compounds in PTEN deficient cells we have found that an extract from Salvia haenkei (SH), a native plant of Bolivia is a potent inhibitor of PICS. SH also decreases replicative and UV-mediated senescence in human primary fibroblasts and in a model of in vitro reconstructed human epidermis. Mechanistically, SH treatment affects senescence driven by UV by interfering with IL1-α signalling. Pre-clinical and clinical testing of this extract by performing toxicity and irritability evaluation in vitro also demonstrate the safety of SH extract for clinical use as anti-aging skin treatment.
Collapse
Affiliation(s)
- Ivana Matic
- Laboratory for Research and Development in Aging, Atrahasis S.r.l., 00189 Rome, Italy.,Research Center, San Pietro "Fatebenefratelli", 00189 Rome, Italy
| | - Ajinkya Revandkar
- Institute of Oncology Research (IOR), Bellinzona CH 6500, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR), Bellinzona CH 6500, Switzerland
| | - Angela Bisio
- Department of Chemistry and Pharmaceutical Technologies, University of Genova, 16126 Genova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Giorgio Mancino
- Research Center, San Pietro "Fatebenefratelli", 00189 Rome, Italy
| | | | - Maurizio Mattei
- Animal Technology Facility of University Tor Vergata, 00173 Rome, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy
| | - Andrea Alimonti
- Laboratory for Research and Development in Aging, Atrahasis S.r.l., 00189 Rome, Italy.,Institute of Oncology Research (IOR), Bellinzona CH 6500, Switzerland
| |
Collapse
|
5
|
Stenvinkel P, Kooman JP, Shiels PG. Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 2016; 19:19-25. [PMID: 26485336 DOI: 10.1097/mco.0000000000000234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Many prevalent clinical conditions, such as chronic kidney disease, diabetes mellitus, chronic obstructive pulmonary, and cardiovascular disease associate with features of premature ageing, such as muscle wasting, hypogonadism, osteoporosis, and arteriosclerosis. Studies on various animal models have shown that caloric restriction prolongs lifespan. Studies of animals with unusual long or short life for their body size may also contribute to better understanding of ageing processes. The aim of the present article is to review what we can learn about nutritional modulations and ageing interactions from animal biology. RECENT FINDINGS Caloric restriction is a powerful intervention that increases longevity in animals ranging from short-lived species, such as worms and flies, to primates. As long-term studies on caloric restriction are not feasible to conduct in humans, much interest has focused on the impact of caloric restriction mimetics, such as resveratrol, on ageing processes. Recent data from studies on the long-lived naked mole rat have provided important novel information on metabolic alterations and antioxidative defense mechanisms that characterize longevity. SUMMARY Better understanding of the biology of exceptionally long-lived animals will contribute to better understanding of ageing processes and novel interventions to extend lifespan also in humans.
Collapse
Affiliation(s)
- Peter Stenvinkel
- aDivision of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet Stockholm, Sweden bDivision of Nephrology, Department of Internal Medicine, University Hospital Maastricht, the Netherlands cInstitute of Cancer Sciences, Wolfson Wohl Translational Research Center, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
6
|
Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 2015; 146-148:28-41. [PMID: 25824609 DOI: 10.1016/j.mad.2015.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
Aging is an inevitable and multifactorial biological process. Free radicals have been implicated in aging processes; it is hypothesized that they cause cumulative oxidative damage to crucial macromolecules and are responsible for failure of multiple physiological mechanisms. However, recent investigations have also suggested that free radicals can act as modulators of several signaling pathways such as those related to sirtuins. Caloric restriction is a non-genetic manipulation that extends lifespan of several species and improves healthspan; the belief that many of these benefits are due to the induction of sirtuins has led to the search for sirtuin activators, especially sirtuin 1, the most studied. Resveratrol, a polyphenol found in red grapes, was first known for its antioxidant and antifungal properties, and subsequently has been reported several biological effects, including the activation of sirtuins. Endogenously-produced melatonin, a powerful free radical scavenger, declines with age and its loss contributes to degenerative conditions of aging. Recently, it was reported that melatonin also activates sirtuins, in addition to other functions, such as regulator of circadian rhythms or anti-inflammatory properties. The fact that melatonin and resveratrol are present in various foods, exhibiting possible synergistic effects, suggests the use of dietary ingredients to promote health and longevity.
Collapse
Affiliation(s)
- Margarita R Ramis
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Susana Esteban
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Antonio Miralles
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|