1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Grzymala B, Þorsteinsson H, Halldórsdóttir DÞ, Sveinsdóttir HS, Sævarsdóttir BR, Norton WHJ, Parker MO, Rolfsson Ó, Karlsson KÆ. Metabolomic and lipidomic profiling reveals convergent pathways in attention deficit hyperactivity disorder therapeutics: Insights from established and emerging treatments. J Pharmacol Exp Ther 2025; 392:103403. [PMID: 40081232 DOI: 10.1016/j.jpet.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 03/15/2025] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with unclear pathological mechanisms. ADHD is treated with both stimulant and nonstimulant medications, but their therapeutic mechanisms and impact on brain metabolites are not fully understood. This study employed an untargeted metabolomics approach with liquid chromatography mass spectrometry to investigate the pathogenesis of ADHD, as well as the effects of established and novel therapeutics. We characterized the metabolomic signatures of the adgrl3.1 mutant zebrafish ADHD model and examined the impact of methylphenidate, guanfacine, atomoxetine, and 5 novel putative therapeutics identified in a prior screen, including amlodipine. Our analysis revealed that the drugs commonly affect pathways related to amino acid and lipid metabolism, specifically involving glycine, serine, threonine, phenylalanine, lysophosphatidylcholine, and sphingomyelin. This convergence on similar metabolic targets was unexpected and suggests a broader, systemic effect of ADHD therapeutics, challenging the traditional view of distinct drug mechanisms. Amlodipine exhibited metabolic effects consistent with established treatments, indicating its potential as a viable alternative or adjunct therapy. These findings provide new insights into the metabolic underpinnings of ADHD and highlight potential targets for developing improved therapeutic strategies. SIGNIFICANCE STATEMENT: This study explores the metabolic pathways affected by attention deficit hyperactivity disorder treatments using a zebrafish adgrl3.1 mutant model. Untargeted metabolomics revealed that both established and novel attention deficit hyperactivity disorder medications influence common amino acid and lipid metabolism pathways, suggesting systemic effects. Notably, amlodipine showed similar impacts as current drugs, offering promise as an alternative therapy.
Collapse
Affiliation(s)
- Bartosz Grzymala
- 3Z, Reykjavik, Iceland; Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Matthew O Parker
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Medical Department, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Karl Ægir Karlsson
- 3Z, Reykjavik, Iceland; Department of Engineering, Reykjavik University, Reykjavik, Iceland; Medical Department, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Huang Z, Liu Q, Guo Q, Gao J, Zhang L, Li L. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroscience 2025; 566:177-189. [PMID: 39681256 DOI: 10.1016/j.neuroscience.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Apelin, an endogenous ligand of G protein-coupled receptor APJ, is widely distributed in the central nervous system (CNS). It can be divided into such subtypes as Apelin-13, Apelin-17, and Apelin-36 as they have different amino acid structures. All Apelin is widely studied as an adipokine, showing a significant protective effect through regulating apoptosis, autophagy, oxidative stress, angiogenesis, inflammation, and other pathophysiological processes. As an adipokine, Apelin has been found to play a crucial role in cardiovascular disease development. In this paper, we reviewed the effects and mechanisms of Apelin in treating CNS diseases, such as neurotrauma, stroke, spinal cord injury, primary tumors, neurodegenerative diseases, psychiatric diseases, epilepsy, and pain.
Collapse
Affiliation(s)
- Zimeng Huang
- Medicine School, Qingdao University, 308 Ningxia Road, Shinan District, Qingdao 266071, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Qixuan Guo
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences and Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Luping Zhang
- Department of Human Anatomy, Binzhou Medical University, Yantai, Shandong, 264003, China.
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Visternicu M, Rarinca V, Burlui V, Halitchi G, Ciobică A, Singeap AM, Dobrin R, Mavroudis I, Trifan A. Investigating the Impact of Nutrition and Oxidative Stress on Attention Deficit Hyperactivity Disorder. Nutrients 2024; 16:3113. [PMID: 39339712 PMCID: PMC11435085 DOI: 10.3390/nu16183113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Attention deficit hyperactivity disorder (ADHD) is the most common childhood-onset neurodevelopmental disorder, characterized by difficulty maintaining attention, impulsivity, and hyperactivity. While the cause of this disorder is still unclear, recent studies have stated that heredity is important in the development of ADHD. This is linked to a few comorbidities, including depression, criminal behavior, and anxiety. Although genetic factors influence ADHD symptoms, there are also non-genetic factors, one of which is oxidative stress (OS), which plays a role in the pathogenesis and symptoms of ADHD. This review aims to explore the role of OS in ADHD and its connection to antioxidant enzyme levels, as well as the gut-brain axis (GBA), focusing on diet and its influence on ADHD symptoms, particularly in adults with comorbid conditions. Methods: The literature search included the main available databases (e.g., Science Direct, PubMed, and Google Scholar). Articles in the English language were taken into consideration and our screening was conducted based on several words such as "ADHD", "oxidative stress", "diet", "gut-brain axis", and "gut microbiota." The review focused on studies examining the link between oxidative stress and ADHD, the role of the gut-brain axis, and the potential impact of dietary interventions. Results: Oxidative stress plays a critical role in the development and manifestation of ADHD symptoms. Studies have shown that individuals with ADHD exhibit reduced levels of key antioxidant enzymes, including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), as well as a diminished total antioxidant status (TOS) compared to healthy controls. Additionally, there is evidence of a close bidirectional interaction between the nervous system and gut microbiota, mediated by the gut-brain axis. This relationship suggests that dietary interventions targeting gut health may influence ADHD symptoms and related comorbidities. Conclusions: Oxidative stress and the gut-brain axis are key factors in the pathogenesis of ADHD, particularly in adults with comorbid conditions. A better understanding of these mechanisms could lead to more targeted treatments, including dietary interventions, to mitigate ADHD symptoms. Further research is required to explore the therapeutic potential of modulating oxidative stress and gut microbiota in the management of ADHD.
Collapse
Affiliation(s)
- Malina Visternicu
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania;
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania; (V.R.); (V.B.); (A.C.)
| | - Viorica Rarinca
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania; (V.R.); (V.B.); (A.C.)
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
| | - Vasile Burlui
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania; (V.R.); (V.B.); (A.C.)
| | - Gabriela Halitchi
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania; (V.R.); (V.B.); (A.C.)
| | - Alin Ciobică
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania; (V.R.); (V.B.); (A.C.)
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700115 Iași, Romania
| | - Romeo Dobrin
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iași, Romania;
- Department of Psychiatry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
| | - Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700115 Iași, Romania
| |
Collapse
|
5
|
Predescu E, Vaidean T, Rapciuc AM, Sipos R. Metabolomic Markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among Children and Adolescents-A Systematic Review. Int J Mol Sci 2024; 25:4385. [PMID: 38673970 PMCID: PMC11050195 DOI: 10.3390/ijms25084385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD), characterized by clinical diversity, poses diagnostic challenges often reliant on subjective assessments. Metabolomics presents an objective approach, seeking biomarkers for precise diagnosis and targeted interventions. This review synthesizes existing metabolomic insights into ADHD, aiming to reveal biological mechanisms and diagnostic potentials. A thorough PubMed and Web of Knowledge search identified studies exploring blood/urine metabolites in ADHD-diagnosed or psychometrically assessed children and adolescents. Synthesis revealed intricate links between ADHD and altered amino acid metabolism, neurotransmitter dysregulation (especially dopamine and serotonin), oxidative stress, and the kynurenine pathway impacting neurotransmitter homeostasis. Sleep disturbance markers, notably in melatonin metabolism, and stress-induced kynurenine pathway activation emerged. Distinct metabolic signatures, notably in the kynurenine pathway, show promise as potential diagnostic markers. Despite limitations like participant heterogeneity, this review underscores the significance of integrated therapeutic approaches targeting amino acid metabolism, neurotransmitters, and stress pathways. While guiding future research, this overview of the metabolomic findings in ADHD suggests directions for precision diagnostics and personalized ADHD interventions.
Collapse
Affiliation(s)
- Elena Predescu
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Tudor Vaidean
- Clinic of Pediatric Psychiatry and Addiction, Clinical Emergency Hospital for Children, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| | - Andreea-Marlena Rapciuc
- Clinical Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Roxana Sipos
- Department of Neuroscience, Psychiatry and Pediatric Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 57 Republicii Street, 400489 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
7
|
Scott SR, Millwood SN, Manczak EM. Adipocytokine correlates of childhood and adolescent mental health: A systematic review. Dev Psychobiol 2023; 65:e22379. [PMID: 36946681 DOI: 10.1002/dev.22379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
The objective of this systematic review was to determine the current state of the literature regarding how adipocytokines associate with mental health symptoms/disorders in youth. Findings summarized in this review suggested that in neurodevelopmental disorders, higher levels of leptin, ghrelin, resistin, and visfatin as well as lower levels of adiponectin, retinol-binding protein 4, and progranulin predicted increased risk for or were conflated with autism spectrum disorder. Adipocytokine correlates of attention-deficit hyperactivity disorder and related symptoms included higher apelin, higher leptin-to-adiponectin ratio, and lower adiponectin. Evidence from studies examining anxiety symptoms evinced mixed results regarding leptin, and one study suggested higher levels of ghrelin. Depressive symptoms correlated with higher leptin and ghrelin. Research examining posttraumatic stress symptoms found higher levels of ghrelin. In research examining broadband symptoms, conflicting results emerged for associations between internalizing symptoms (i.e., symptoms of emotional stress) and leptin in youth. Low levels of adiponectin and high levels of leptin predicted externalizing symptoms. Total symptom difficulties were associated with a higher leptin-to-adiponectin ratio. Our findings suggest that adipocytokines may be an important set of biomarkers to consider as underlying mechanisms contributing to developmental psychopathology.
Collapse
Affiliation(s)
- Samantha R Scott
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Summer N Millwood
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Erika M Manczak
- Biology, Environments, and Mood Studies Lab, Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
8
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Relationship between Apelin/APJ Signaling, Oxidative Stress, and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/8866725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apelin, a peptide hormone, is an endogenous ligand for G protein-coupled receptor and has been shown to be widely expressed in human and animal tissues, such as the central nervous system and adipose tissue. Recent studies indicate that the apelin/APJ system is involved in the regulation of multiple physiological and pathological processes, and it is associated with cardiovascular diseases, metabolic disorders, neurological diseases, ischemia-reperfusion injury, aging, eclampsia, deafness, and tumors. The occurrence and development of these diseases are closely related to the local inflammatory response. Oxidative stress is that the balance between oxidation and antioxidant is broken, and reactive oxygen species are produced in large quantities, causing cell or molecular damage, which leads to vascular damage and a series of inflammatory reactions. Hence, this article reviewed recent advances in the relationship between apelin/APJ and oxidative stress, and inflammation-related diseases, and highlights them as potential therapeutic targets for oxidative stress-related inflammatory diseases.
Collapse
|