1
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Zhao Y, Skovgaard Z, Wang Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024; 136:100746. [PMID: 38241884 DOI: 10.1016/j.diff.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.
Collapse
Affiliation(s)
| | | | - Qinyi Wang
- Computer Science Department, California State Polytechnic University Pomona, USA
| |
Collapse
|
3
|
Luo S, Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Decreased SUV39H1 at the promoter region leads to increased CREMα and accelerates autoimmune response in CD4 + T cells from patients with systemic lupus erythematosus. Clin Epigenetics 2022; 14:181. [PMID: 36536372 PMCID: PMC9764740 DOI: 10.1186/s13148-022-01411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.
Collapse
Affiliation(s)
- Shuangyan Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Huilin Zhang
- grid.216417.70000 0001 0379 7164Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Yuming Xie
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Junke Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Danhong Luo
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, #49 Longkun South Rd, Haikou, 570206 Hainan People’s Republic of China
| | - Qing Zhang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
4
|
Li F, Cui X, Jing J, Wang S, Shi H, Xue B, Shi H. Brown Fat Dnmt3b Deficiency Ameliorates Obesity in Female Mice. Life (Basel) 2021; 11:life11121325. [PMID: 34947856 PMCID: PMC8703316 DOI: 10.3390/life11121325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity results from a chronic energy imbalance due to energy intake exceeding energy expenditure. Activation of brown fat thermogenesis has been shown to combat obesity. Epigenetic regulation, including DNA methylation, has emerged as a key regulator of brown fat thermogenic function. Here we aimed to study the role of Dnmt3b, a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat thermogenesis and obesity. We found that the specific deletion of Dnmt3b in brown fat promotes the thermogenic and mitochondrial program in brown fat, enhances energy expenditure, and decreases adiposity in female mice fed a regular chow diet. With a lean phenotype, the female knockout mice also exhibit increased insulin sensitivity. In addition, Dnmt3b deficiency in brown fat also prevents diet-induced obesity and insulin resistance in female mice. Interestingly, our RNA-seq analysis revealed an upregulation of the PI3K-Akt pathway in the brown fat of female Dnmt3b knockout mice. However, male Dnmt3b knockout mice have no change in their body weight, suggesting the existence of sexual dimorphism in the brown fat Dnmt3b knockout model. Our data demonstrate that Dnmt3b plays an important role in the regulation of brown fat function, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
- Correspondence: (B.X.); (H.S.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (F.L.); (X.C.); (J.J.); (S.W.)
- Correspondence: (B.X.); (H.S.)
| |
Collapse
|
5
|
Wang S, Cao Q, Cui X, Jing J, Li F, Shi H, Xue B, Shi H. Dnmt3b Deficiency in Myf5 +-Brown Fat Precursor Cells Promotes Obesity in Female Mice. Biomolecules 2021; 11:1087. [PMID: 34439754 PMCID: PMC8393658 DOI: 10.3390/biom11081087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing energy expenditure through activation of brown fat thermogenesis is a promising therapeutic strategy for the treatment of obesity. Epigenetic regulation has emerged as a key player in regulating brown fat development and thermogenic program. Here, we aimed to study the role of DNA methyltransferase 3b (Dnmt3b), a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat function and energy homeostasis. We generated a genetic model with Dnmt3b deletion in brown fat-skeletal lineage precursor cells (3bKO mice) by crossing Dnmt3b-floxed (fl/fl) mice with Myf5-Cre mice. Female 3bKO mice are prone to diet-induced obesity, which is associated with decreased energy expenditure. Dnmt3b deficiency also impairs cold-induced thermogenic program in brown fat. Surprisingly, further RNA-seq analysis reveals a profound up-regulation of myogenic markers in brown fat of 3bKO mice, suggesting a myocyte-like remodeling in brown fat. Further motif enrichment and pyrosequencing analysis suggests myocyte enhancer factor 2C (Mef2c) as a mediator for the myogenic alteration in Dnmt3b-deficient brown fat, as indicated by decreased methylation at its promoter. Our data demonstrate that brown fat Dnmt3b is a key regulator of brown fat development, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| |
Collapse
|
6
|
Nanduri R. Epigenetic Regulators of White Adipocyte Browning. EPIGENOMES 2021; 5:3. [PMID: 34968255 PMCID: PMC8594687 DOI: 10.3390/epigenomes5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Adipocytes play an essential role in maintaining energy homeostasis in mammals. The primary function of white adipose tissue (WAT) is to store energy; for brown adipose tissue (BAT), primary function is to release fats in the form of heat. Dysfunctional or excess WAT can induce metabolic disorders such as dyslipidemia, obesity, and diabetes. Preadipocytes or adipocytes from WAT possess sufficient plasticity as they can transdifferentiate into brown-like beige adipocytes. Studies in both humans and rodents showed that brown and beige adipocytes could improve metabolic health and protect from metabolic disorders. Brown fat requires activation via exposure to cold or β-adrenergic receptor (β-AR) agonists to protect from hypothermia. Considering the fact that the usage of β-AR agonists is still in question with their associated side effects, selective induction of WAT browning is therapeutically important instead of activating of BAT. Hence, a better understanding of the molecular mechanisms governing white adipocyte browning is vital. At the same time, it is also essential to understand the factors that define white adipocyte identity and inhibit white adipocyte browning. This literature review is a comprehensive and focused update on the epigenetic regulators crucial for differentiation and browning of white adipocytes.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|