1
|
Wall SW, Sanchez L, Tuttle KS, Pearson SJ, Soma S, Wyatt GL, Carter HN, Jenschke RM, Tan L, Martinez SA, Lorenzi PL, Gohil VM, Rijnkels M, Porter WW. Noncanonical role of singleminded-2s in mitochondrial respiratory chain formation in breast cancer. Exp Mol Med 2023; 55:1046-1063. [PMID: 37121978 PMCID: PMC10238511 DOI: 10.1038/s12276-023-00996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.
Collapse
Affiliation(s)
- Steven W Wall
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | | | - Scott J Pearson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett L Wyatt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hannah N Carter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Ramsey M Jenschke
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Vishal M Gohil
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Kostenko V, Akimov O, Gutnik O, Kostenko H, Kostenko V, Romantseva T, Morhun Y, Nazarenko S, Taran O. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon 2023; 9:e15551. [PMID: 37180884 PMCID: PMC10171461 DOI: 10.1016/j.heliyon.2023.e15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
One of the adverse outcomes of acute inflammatory response is progressing to the chronic stage or transforming into an aggressive process, which can develop rapidly and result in the multiple organ dysfunction syndrome. The leading role in this process is played by the Systemic Inflammatory Response that is accompanied by the production of pro- and anti-inflammatory cytokines, acute phase proteins, and reactive oxygen and nitrogen species. The purpose of this review that highlights both the recent reports and the results of the authors' own research is to encourage scientists to develop new approaches to the differentiated therapy of various SIR manifestations (low- and high-grade systemic inflammatory response phenotypes) by modulating redox-sensitive transcription factors with polyphenols and to evaluate the saturation of the pharmaceutical market with appropriate dosage forms tailored for targeted delivery of these compounds. Redox-sensitive transcription factors such as NFκB, STAT3, AP1 and Nrf2 have a leading role in mechanisms of the formation of low- and high-grade systemic inflammatory phenotypes as variants of SIR. These phenotypic variants underlie the pathogenesis of the most dangerous diseases of internal organs, endocrine and nervous systems, surgical pathologies, and post-traumatic disorders. The use of individual chemical compounds of the class of polyphenols, or their combinations can be an effective technology in the therapy of SIR. Administering natural polyphenols in oral dosage forms is very beneficial in the therapy and management of the number of diseases accompanied with low-grade systemic inflammatory phenotype. The therapy of diseases associated with high-grade systemic inflammatory phenotype requires medicinal phenol preparations manufactured for parenteral administration.
Collapse
Affiliation(s)
- Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Ukraine
- Corresponding author.
| | - Oleksandr Gutnik
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Ukraine
| | - Tamara Romantseva
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Yevhen Morhun
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Svitlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| | - Olena Taran
- Poltava State Medical University, Department of Pathophysiology, Ukraine
| |
Collapse
|
3
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
4
|
Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, Lin Y, Zhu W, Yan G, Cai J, Li S. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett 2021; 502:9-24. [PMID: 33444691 DOI: 10.1016/j.canlet.2020.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
NanoKnife, a nonthermal ablation technique also termed irreversible electroporation (IRE), has been adopted in locally advanced pancreatic cancer (LAPC) treatment. However, reversible electroporation (RE) caused by heterogeneous electric field magnitude leads to inadequate ablation and tumor recurrence. Alphavirus M1 has been identified as a novel natural oncolytic virus which is nonpathogenic and with high tumor selectivity. This study evaluated improvements to therapeutic efficacy through combination therapy incorporating NanoKnife and M1 virus. We showed that IRE triggered reactive oxygen species (ROS)-dependent apoptosis in pancreatic cancer cells (PCCs) mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. When NanoKnife was combined with M1 virus, the therapeutic efficacy was synergistically enhanced. The combinatorial treatment further inhibited tumor proliferation and prolonged the survival of orthotopic pancreatic cancer (PC)-bearing immunocompetent mice. In depth, NanoKnife enhanced the oncolytic effect of M1 by promoting its infection. The combination turned immune-silent tumors into immune-inflamed tumors characterized by T cell activation. Clinicopathologic analysis of specific M1 oncolytic biomarkers indicated the potential of the combination regimen. The combinatorial therapy represents a promising therapeutic efficacy and may ultimately improve the prognosis of patients with LAPC.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Wanming Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jiali Wu
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Bradley JR, Wang J, Pacey S, Warren AY, Pober JS, Al‐Lamki RS. Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133 + cells in clear cell renal carcinoma. FASEB Bioadv 2020; 2:126-144. [PMID: 32123862 PMCID: PMC7003657 DOI: 10.1096/fba.2019-00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 08/25/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) contains cancer stem-like cells (CSCs) that express CD133 (ccRCC-CD133+). CSCs are rarely in cell cycle and, as nonproliferating cells, resist most chemotherapeutic agents. Previously, we reported that tumor necrosis factor receptor-2 (TNFR2) signaling promotes the cell cycle entry of ccRCC-CD133+CSCs, rendering them susceptible to cell-cycle-dependent chemotherapeutics. Here, we describe a TNFR2-activated signaling pathway in ccRCC-CD133+CSCs that is required for cell survival. Wild-type (wt)TNF or R2TNF but not R1TNF (TNF muteins that selectively bind to TNFR2 and TNFR1) induces phosphorylation of signal transducer and activator of transcription 3 (STAT3) on serine727 but not tyrosine705, resulting in pSTAT3Ser727 translocation to and colocalization with TNFR2 in mitochondria. R2TNF signaling activates a kinase cascade involving the phosphorylation of VEGFR2, PI-3K, Akt, and mTORC. Inhibition of any of the kinases or siRNA knockdown of TNFR2 or STAT3 promotes cell death associated with mitochondrial morphological changes, cytochrome c release, generation of reactive oxygen species, and TUNEL+cells expressing phosphorylated mixed lineage kinase-like (MLKL). Pretreatment with necrostatin-1 is more protective than z-VAD.fmk, suggesting that most death is necroptotic and TNFR2 signaling promotes cell survival by preventing mitochondrial-mediated necroptosis. These data suggest that a TNFR2 selective agonist may offer a potential therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- John R. Bradley
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Jun Wang
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Simon Pacey
- Department of OncologyNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Anne Y. Warren
- Department of HistopathologyAddenbrooke's Hospital and University of CambridgeCambridgeUK
| | | | - Rafia S. Al‐Lamki
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Zhang K, Yang X, Zhao Q, Li Z, Fu F, Zhang H, Zheng M, Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells Int 2020; 2020:8892300. [PMID: 32849880 PMCID: PMC7441422 DOI: 10.1155/2020/8892300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells.
Collapse
Affiliation(s)
- Kexin Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 2Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xudong Yang
- 3Tianjin Rehabilitation Center, Tianjin, China
| | - Qi Zhao
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
7
|
Nakamura-Ishizu A, Matsumura T, Stumpf PS, Umemoto T, Takizawa H, Takihara Y, O'Neil A, Majeed ABBA, MacArthur BD, Suda T. Thrombopoietin Metabolically Primes Hematopoietic Stem Cells to Megakaryocyte-Lineage Differentiation. Cell Rep 2019; 25:1772-1785.e6. [PMID: 30428347 DOI: 10.1016/j.celrep.2018.10.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
During acute myelosuppression or thrombocytopenia, bone marrow (BM) hematopoietic cells respond rapidly to replenish peripheral blood platelets. While the cytokine thrombopoietin (Thpo) both regulates platelet production and maintains HSC potential, whether Thpo controls megakaryocyte (Mk)-lineage differentiation of HSCs is unclear. Here, we show that Thpo rapidly upregulates mitochondrial activity in HSCs, an activity accompanied by differentiation to an Mk lineage. Moreover, in unperturbed hematopoiesis, HSCs with high mitochondrial activity exhibit Mk-lineage differentiation in vitro and myeloid lineage-biased reconstitution in vivo. Furthermore, Thpo skewed HSCs to express the tetraspanin CD9, a pattern correlated with mitochondrial activity. Mitochondria-active HSCs are resistant to apoptosis and oxidative stress upon Thpo stimulation. Thpo-regulated mitochondrial activity associated with mitochondrial translocation of STAT3 phosphorylated at serine 727. Overall, we report an important role for Thpo in regulating rapid Mk-lineage commitment. Thpo-dependent changes in mitochondrial metabolism prime HSCs to undergo direct differentiation to an Mk lineage.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| | - Takayoshi Matsumura
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | - Patrick S Stumpf
- Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Terumasa Umemoto
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Yuji Takihara
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | - Aled O'Neil
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore
| | | | - Ben D MacArthur
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan; Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| |
Collapse
|
8
|
ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem 2019; 467:1-12. [PMID: 31813106 PMCID: PMC7089381 DOI: 10.1007/s11010-019-03667-9] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Researches dedicated to reactive oxygen species (ROS) had been performed for decades, yet the outcomes remain controversial. With the relentless effort of studies, researchers have explored the role of ROS in biosystem and various diseases. ROS are beneficial for biosystem presenting as signalling molecules and enhancing immunologic defence. However, they also have harmful effects such as causing tissue and organ damages. The results are controversial in studies focusing on ROS and ROS-related diseases by regulating ROS with inhibitors or promotors. These competing results hindered the process for further investigation of the specific mechanisms lying behind. The opinions presented in this review interpret the researches of ROS from a different dimension that might explain the competing results of ROS introduced so far from a broader perspective. This review brings a different thinking to researchers, with the neglected features and potentials of ROS, to relate their works with ROS and to explore the mechanisms between their subject and ROS.
Collapse
|
9
|
Lacava G, Laus F, Amaroli A, Marchegiani A, Censi R, Di Martino P, Yanagawa T, Sabbieti MG, Agas D. P62 deficiency shifts mesenchymal/stromal stem cell commitment toward adipogenesis and disrupts bone marrow homeostasis in aged mice. J Cell Physiol 2019; 234:16338-16347. [PMID: 30740681 DOI: 10.1002/jcp.28299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
With advancing age have been observed bone and bone marrow phenotypic alterations due to the impaired bone tissue homeostatic features, involving bone remodeling, and bone marrow niche ontogeny. The complex "inflamm-aging" pathological scenario that culminates with osteopenia and mesenchymal/stromal and hematopoietic stem cell commitment breakdown, is controlled by cellular and molecular intramural components comprising adapter proteins such as the sequestosome 1 (p62/SQSTM1). p62, a "multiway function" protein, has been reported as an effective anti-inflammatory, bone-building factor. In this view, we considered for the first time the involvement of p62 in aging bone and bone marrow of 1 year and 2 years p62-/- mice. Interestingly, p62 deficiency provoked accelerated osteopenia and impaired niche operational activities within the bone marrow. The above findings unearthed the importance of p62 in mesenchymal stem cell maintenance/differentiation schedule in old animals and provide, at least in part, a mechanistic scenario of p62 action.
Collapse
Affiliation(s)
- Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|