1
|
Ashique S, Mishra N, Garg A, Kumar N, Khan Z, Mohanto S, Chellappan DK, Farid A, Taghizadeh-Hesary F. A Critical Review on the Role of Probiotics in Lung Cancer Biology and Prognosis. Arch Bronconeumol 2024; 60 Suppl 2:S46-S58. [PMID: 38755052 DOI: 10.1016/j.arbres.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, MP 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
3
|
Zeng X, Liu H, Huang G, Wang Y, Zhou W, Wang Y, Chen X, Cheng X, Zhuang R, Li J, Fang J, Huang L, Zhang X, Guo Z. Development of Preladenant-Based Radiotracers for Imaging A 2AR in Tumors. J Med Chem 2024. [PMID: 39036887 DOI: 10.1021/acs.jmedchem.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Activation of the adenosine 2A receptor (A2AR) can lead to tumor immunosuppression, which results in poor prognosis of immunotherapy. The aim of this study was to design novel 18F-labeled probes ([18F]F-PFP2 and [18F]F-PFP4) to visualize A2AR in the tumor. The uptake of radioprobes in A2AR-negative 4T1 breast tumor was lower than that of A2AR-positive B16F10 melanoma at 1 h p.i. (1.22 ± 0.36% ID/g vs 2.80 ± 0.72% ID/g), 2 h p.i. (1.09 ± 0.20% ID/g vs 2.93 ± 0.76% ID/g) and 3 h p.i. (0.89 ± 0.27% ID/g vs 2.73 ± 0.58% ID/g), respectively. B16F10 lung metastasis models were employed to expand the application scenarios, observing significantly higher uptake of [18F]F-PFP2 in metastatic lesions compared to normal lung tissue (5.55 ± 2.18% ID/g vs 1.89 ± 0.65% ID/g, tumor/lung ratio ∼3). It is given that [18F]F-PFP2 might lay the foundation for establishing an A2AR-targeted imaging evaluation system for tumors, which will provide more precise guidance for personalized treatment.
Collapse
Affiliation(s)
- Xueyuan Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwu Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guolong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yanjie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wuhao Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yike Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuedong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingxing Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &, Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
5
|
Schreiber M, Macháček T, Vajs V, Šmídová B, Majer M, Hrdý J, Tolde O, Brábek J, Rösel D, Horák P. Suppression of the growth and metastasis of mouse melanoma by Taenia crassiceps and Mesocestoides corti tapeworms. Front Immunol 2024; 15:1376907. [PMID: 38571957 PMCID: PMC10987685 DOI: 10.3389/fimmu.2024.1376907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Tolde
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Daniel Rösel
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Acuña-Castillo C, Escobar A, García-Gómez M, Bachelet VC, Huidobro-Toro JP, Sauma D, Barrera-Avalos C. P2X7 Receptor in Dendritic Cells and Macrophages: Implications in Antigen Presentation and T Lymphocyte Activation. Int J Mol Sci 2024; 25:2495. [PMID: 38473744 DOI: 10.3390/ijms25052495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
The P2X7 receptor, a member of the P2X purinergic receptor family, is a non-selective ion channel. Over the years, it has been associated with various biological functions, from modulating to regulating inflammation. However, its emerging role in antigen presentation has captured the scientific community's attention. This function is essential for the immune system to identify and respond to external threats, such as pathogens and tumor cells, through T lymphocytes. New studies show that the P2X7 receptor is crucial for controlling how antigens are presented and how T cells are activated. These studies focus on antigen-presenting cells, like dendritic cells and macrophages. This review examines how the P2X7 receptor interferes with effective antigen presentation and activates T cells and discusses the fundamental mechanisms that can affect the immune response. Understanding these P2X7-mediated processes in great detail opens up exciting opportunities to create new immunological therapies.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380000, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Vivienne C Bachelet
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Centro Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba 8580000, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| |
Collapse
|
7
|
Chumak A, Fedosova N, Cheremshenko N, Karaman O, Симчич Т, Voyeykova I. EFFECT OF B. SUBTILIS ІМV B-7724 LECTIN ON THE ACTIVITY OF EFFECTORS OF CELLULAR ANTITUMOR IMMUNITY OF MICE WITH LEWIS LUNG CARCINOMA. Exp Oncol 2023; 45:328-336. [PMID: 38186022 DOI: 10.15407/exp-oncology.2023.03.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
AIM To evaluate the effect of B. subtilis IMV B-7724 lectin on the functional activity of macrophages (Mph), natural killer (NK) cells and cytotoxic lymphocytes (CTL) of mice bearing Lewis lung carcinoma (LLC). MATERIALS AND METHODS The studies were performed on C57Bl/6J mice; LLC was used as an experimental transplantable tumor. The lectin from B. subtilis IMV B-7724 was administered to LLC-bearing mice subcutaneously at a dose of 1 mg/kg of body weight for 10 days. The immunological testing was performed on days 14, 21, and 28 after tumor grafting. The cytotoxic activity of Mph, NK, and CTL was estimated in MTT-assay; the content of the stable metabolites of nitric oxide (NO) was measured by a standard Griess reaction; the arginase activity (Arg) was determined based on the measurement of urea. RESULTS The administration of the B. subtilis IMV B-7724 lectin to LLC-bearing mice exerted its antitumor and antimetastatic effects partially via a significant (p < 0.05) increase of Mph and NK activities after the completion of the treatment. In the group of animals injected with lectin, the NO/Arg ratio increased significantly, indicating the prevalence of Mph with proinflammatory and antitumor properties. The cytotoxic activity of Mph exceeded the indices of untreated mice and intact control by 1.8 times and 5.3 times respectively; of NK - by 2.8 and 1.3 times respectively. The effect of treatment on the CTL activity was less pronounced. CONCLUSION Antitumor and antimetastatic activity of the lectin from B. subtilis IMV B-7724 ensured the preservation of the cytotoxic activity of the main effectors of antitumor immunity (Mph, NK, and CTL) throughout LLC growth.
Collapse
Affiliation(s)
- A Chumak
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Fedosova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Cheremshenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Karaman
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Т Симчич
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Voyeykova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Hidifira AM, Alvares-Saraiva AM, Perez EC, Spadacci-Morena DD, de Araujo RS, Lallo MA. Increased susceptibility to encephalitozoonosis associated with mixed Th1/Th2 profile and M1/M2 profile in mice immunosuppressed with cyclophosphamide. Exp Parasitol 2023; 254:108606. [PMID: 37666408 DOI: 10.1016/j.exppara.2023.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Encephalitozoon cuniculi is a unicellular, spore-forming, obligate intracellular eukaryote belonging to the phylum Microsporidia. It is known to infect mainly immunocompromised and immunocompetent mammals, including humans. The parasite-host relationship has been evaluated using both in vitro cell culturing and animal models. For example, Balb/c and C57BL/6 mouse strains have been used interchangeably, although the latter has been considered more susceptible due to the higher fungal load observed after infection. In the present study, we identified the characteristics of the immune response of C57BL/6 mice treated or not with the immunosuppressant cyclophosphamide (Cy) and challenged with E. cuniculi by intraperitoneal route. After 14 days of infection, serum was collected to analyze Th1, Th2, and Th17 cytokine levels. In addition, peritoneal washes were performed, and the spleen sample was collected for immune cell phenotyping, whereas liver, spleen, kidney, lung, intestine, and central nervous system (CNS) samples were collected for histopathological analysis. Although infected mice displayed a reduced absolute number of macrophages, they showed an M1 profile, an elevated number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and interleukin [IL]-2) and Th17. Furthermore, Cy-Infected mice showed a reduced absolute number of macrophages with an M1 profile but a reduced number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4). This group displayed a higher fungal burden as well and developed more severe encephalitozoonosis, which was associated with a reduced number of T and B lymphocytes and a mixed profile of Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Amanda Miyuki Hidifira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil.
| |
Collapse
|
9
|
Zaryouh H, De Pauw I, Baysal H, Melis J, Van den Bossche V, Hermans C, Lau HW, Lambrechts H, Merlin C, Corbet C, Peeters M, Vermorken JB, De Waele J, Lardon F, Wouters A. Establishment of head and neck squamous cell carcinoma mouse models for cetuximab resistance and sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:709-728. [PMID: 38239393 PMCID: PMC10792481 DOI: 10.20517/cdr.2023.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Jöran Melis
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Valentin Van den Bossche
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels B-1200, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- Department of Medical Oncology, Antwerp University Hospital, Edegem 2650, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- Department of Medical Oncology, Antwerp University Hospital, Edegem 2650, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- The authors contributed equally
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Campus Drie Eiken, Antwerp 2610, Belgium
- The authors contributed equally
| |
Collapse
|
10
|
Schmidt HC, Hagens J, Schuppert P, Appl B, Raluy LP, Trochimiuk M, Philippi C, Li Z, Reinshagen K, Tomuschat C. Biliatresone induces cholangiopathy in C57BL/6J neonates. Sci Rep 2023; 13:10574. [PMID: 37386088 PMCID: PMC10310722 DOI: 10.1038/s41598-023-37354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to plant toxins or microbiota that are able to digest common food ingredients to toxic structures might be responsible for biliary atresia (BA). An isoflavonoid, biliatresone is known to effectively alter the extrahepatic bile duct (EHBD) development in BALB/c mice. Biliatresone causes a reduction of Glutathione (GSH) levels, SOX17 downregulation and is effectively countered with N-Acetyl-L-cysteine treatment in vitro. Therefore, reversing GSH-loss appears to be a promising treatment target for a translational approach. Since BALB/c mice have been described as sensitive in various models, we evaluated the toxic effect of biliatresone in robust C57BL/6J mice and confirmed its toxicity. Comparison between BALB/c and C57BL/6J mice revealed similarity in the toxic model. Affected neonates exhibited clinical symptoms of BA, such as jaundice, ascites, clay-colored stools, yellow urine and impaired weight gain. The gallbladders of jaundiced neonates were hydropic and EHBD were twisted and enlarged. Serum and histological analysis proved cholestasis. No anomalies were seen in the liver and EHBD of control animals. With our study we join a chain of evidence confirming that biliatresone is an effective agent for cross-lineage targeted alteration of the EHBD system.
Collapse
Affiliation(s)
- Hans Christian Schmidt
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Johanna Hagens
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Pauline Schuppert
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Birgit Appl
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Laia Pagerols Raluy
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Magdalena Trochimiuk
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Clara Philippi
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Zhongwen Li
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Tomuschat
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Activity of ROCKII not ROCKI promotes pulmonary metastasis of melanoma cells via modulating Smad2/3-MMP9 and FAK-Src-VEGF signalling. Cell Signal 2022; 97:110389. [PMID: 35718242 DOI: 10.1016/j.cellsig.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) inhibition decreases tumourogenic growth, proliferation and angiogenesis. Multifaceted evidences are there about the role of ROCK in cancer progression, but isoform specific analysis in secondary pulmonary melanoma is still unaddressed. This study explored the operating function of ROCK in the metastasis of B16F10 mice melanoma cell line. Inhibition by KD-025 indicated dual wielding role of ROCKII as it is associated with the regulation of MMP9 activity responsible for extra-cellular matrix (ECM) degradation as well as angiogenic invasion as an effect of Src-FAK-STAT3 interaction dependent VEGF switching. We found the assisting role of ROCKII, not ROCKI in nuclear localization of Smads that effectively increased MMP9 expression and activity (p < 0.01). This cleaved the protein components of ECM thereby played a crucial role in tissue remodeling at secondary site during establishment of metastatic tumour. ROCKII phosphorylation at Ser1366 as an activation of the same was imprinted essential for oncogenic molecular bagatelle leading to histo-architectural change of pulmonary tissue with extracellular matrix degradation as a consequence of invasion. Direct correlation of pROCKIISer1366 with MMP9 as well as VEGF expression in vivo studies cue to demonstrate the importance of pROCKIISer1366 inhibition in the context of angiogenesis, and metastasis suggesting ROCKII signaling as a possible target for the treatment of secondary lung cancer specially in metastatic melanoma.
Collapse
|
13
|
Kaps L, Huppertsberg A, Choteschovsky N, Klefenz A, Durak F, Schrörs B, Diken M, Eichler E, Rosigkeit S, Schmitt S, Leps C, Schulze A, Foerster F, Bockamp E, De Geest BG, Koynov K, Räder HJ, Tenzer S, Marini F, Schuppan D, Nuhn L. pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proc Natl Acad Sci U S A 2022; 119:e2122310119. [PMID: 35290110 PMCID: PMC8944276 DOI: 10.1073/pnas.2122310119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester–based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug’s safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester–based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.
Collapse
Affiliation(s)
- Leonard Kaps
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Internal Medicine I, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Niklas Choteschovsky
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Feyza Durak
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Babara Schrörs
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Emma Eichler
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Friedrich Foerster
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Internal Medicine I, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Bruno G. De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
14
|
Sia J, Hagekyriakou J, Chindris I, Albarakati H, Leong T, Schlenker R, Keam SP, Williams SG, Neeson PJ, Johnstone RW, Haynes NM. Regulatory T Cells Shape the Differential Impact of Radiation Dose-Fractionation Schedules on Host Innate and Adaptive Antitumor Immune Defenses. Int J Radiat Oncol Biol Phys 2021; 111:502-514. [PMID: 34023423 DOI: 10.1016/j.ijrobp.2021.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph Sia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jim Hagekyriakou
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ioana Chindris
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Hassan Albarakati
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Trevor Leong
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ramona Schlenker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Munich, Penzberg, Germany
| | - Simon P Keam
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia; Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Scott G Williams
- Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ricky W Johnstone
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicole M Haynes
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
15
|
Debnath S, Mukherjee A, Saha D, Dash J, Chatterjee TK. Poly-l-Lysine inhibits VEGF and c-Myc mediated tumor-angiogenesis and induces apoptosis in 2D and 3D tumor microenvironment of both MDA-MB-231 and B16F10 induced mice model. Int J Biol Macromol 2021; 183:528-548. [PMID: 33892042 DOI: 10.1016/j.ijbiomac.2021.04.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
Cancer is a widespread disease that has shown promising mortality worldwide. Our previous study has been shown the efficacy of Poly-l-lysine (PLL) as a promising cytotoxic effect against cancer cells. However, exact-mechanism of PLL in 3D physiological relevant tumor-microenvironment and against tumor-angiogenesis has never been analysed. In this study, we have investigated apoptotic efficacy of PLL, if any in opposition to proliferative aggressive cancer cell MDA-MB-231 both 2D and-3D cell culture conditions. Furthermore, PLL was administered in B16F10 murine melanoma cells induced BALB/c mice model. The study has been designed through transcription and translation level of PLL-induced tumor-angiogenesis and apoptotic gene-expression modulation level and various relevant histological studies in comparison with untreated control. Studies have shown anti-proliferative and anti-tumor angiogenic efficacy of PLL better in in-vitro 3D tumor-microenvironment against MDA-MB-231 breast cancer cells. Furthermore, in-vivo model, PLL was found to suppress tumorigenesis process at minimum dose. PLL found to induce apoptosis through-upregulation of cytosolic-cytochrome-C, caspase-3 and PARP activations when administered in B16F10 induced in-vivo tumor. In blocking proliferation and tumor-angiogenesis, PLL was found to be effective as it significantly downregulated activity of VEGF, VEGFR2, Ki-67 and c-Myc expression. As PLL blocked tumor progression and induced DNA-break, also upregulated apoptotic process and recovered tissue architecture as revealed from histological study in comparison with untreated control. Overall PLL was found to be a promising anti-tumor angiogenic and anti-proliferative drug that was effective both in in-vitro breast cancer 3D tumor-microenvironment and in-vivo metastatic-mice-model.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St, West Lafayette, IN-47907, USA; Division of Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur-700032, India.
| | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata-700029, India
| | - Dhananjoy Saha
- Deputy Director, Technical Education, West Bengal State Council & Technical Education, Bikas Bhavan, Saltlake, Kolkata, West Bengal, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tapan Kumar Chatterjee
- Division of Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur-700032, India; Department of Pharmaceutical Science and Technology, JIS University, Kolkata, India; and Former Professor, Division of Pharmacology, Department of Pharmaceutical Technology, Former Director, Clinical Research Centre, Jadavpur University, Kolkata, India.
| |
Collapse
|
16
|
Sánchez-Del-Campo L, Martí-Díaz R, Montenegro MF, González-Guerrero R, Hernández-Caselles T, Martínez-Barba E, Piñero-Madrona A, Cabezas-Herrera J, Goding CR, Rodríguez-López JN. MITF induces escape from innate immunity in melanoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:117. [PMID: 33789714 PMCID: PMC8015040 DOI: 10.1186/s13046-021-01916-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The application of immune-based therapies has revolutionized cancer treatment. Yet how the immune system responds to phenotypically heterogeneous populations within tumors is poorly understood. In melanoma, one of the major determinants of phenotypic identity is the lineage survival oncogene MITF that integrates diverse microenvironmental cues to coordinate melanoma survival, senescence bypass, differentiation, proliferation, invasion, metabolism and DNA damage repair. Whether MITF also controls the immune response is unknown. METHODS By using several mouse melanoma models, we examine the potential role of MITF to modulate the anti-melanoma immune response. ChIP-seq data analysis, ChIP-qPCR, CRISPR-Cas9 genome editing, and luciferase reporter assays were utilized to identify ADAM10 as a direct MITF target gene. Western blotting, confocal microscopy, flow cytometry, and natural killer (NK) cytotoxicity assays were used to determine the underlying mechanisms by which MITF-driven phenotypic plasticity modulates melanoma NK cell-mediated killing. RESULTS Here we show that MITF regulates expression of ADAM10, a key sheddase that cleaves the MICA/B family of ligands for NK cells. By controlling melanoma recognition by NK-cells MITF thereby controls the melanoma response to the innate immune system. Consequently, while melanoma MITFLow cells can be effectively suppressed by NK-mediated killing, MITF-expressing cells escape NK cell surveillance. CONCLUSION Our results reveal how modulation of MITF activity can impact the anti-melanoma immune response with implications for the application of anti-melanoma immunotherapies.
Collapse
Affiliation(s)
- Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Murcia, Spain.
| | - Román Martí-Díaz
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Murcia, Spain
| | - María F Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Murcia, Spain
| | - Rebeca González-Guerrero
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | | | | | - Juan Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Colin R Goding
- ResearchNuffield Department of Clinical Medicine, Ludwig Institute for Cancer, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Bleul T, Zhuang X, Hildebrand A, Lange C, Böhringer D, Schlunck G, Reinhard T, Lapp T. Different Innate Immune Responses in BALB/c and C57BL/6 Strains following Corneal Transplantation. J Innate Immun 2020; 13:49-59. [PMID: 32906119 DOI: 10.1159/000509716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate immunological differences and the role of CD38+/F4/80 + M1 macrophages in C57BL/6J- and BALB/c-recipient mouse corneal transplantation models. METHODS Allogeneic transplantation was performed crosswise in BALB/c mice and C57BL/6J mice; syngeneic transplantation was performed in both strains. Anterior chamber depth (ACD) was measured before and central corneal thickness (CCT) was measured both before and after transplantation. In vivo graft rejection was monitored using anterior eye segment optical coherence tomography (ASOCT) evaluating the CCT and grading of corneal oedema using a well-established clinical score (CS). Histology of corneal grafts was performed 18 or 21 days after surgery. Immunohistochemistry with anti-F4/80 antibody and anti-CD38 antibody was used for detecting M1 macrophages within the grafts. RESULTS High CS and CCT values after allogeneic transplantation persisted in both BALB/c (n = 18) and C57BL/6J recipients (n = 20). After syngeneic transplantation, CS and CCT values increased in both models in the early phase after surgery due to the surgical trauma. Surprisingly, in the syngeneic C57BL/6J model, high CCT values persisted. Furthermore, anterior synechiae developed in C57BL/6 recipients after both syngeneic and allogeneic transplantation, whereas BALB/c recipients showed almost no synechiae - even though C57/BL6J animals tended to have a deeper anterior chamber (281 ± 11 pixels [mean ± SD]) compared with BALB/c animals of the same age (270 ± 9 pixels [mean ± SD]). Immunohistochemistry revealed numerous CD38+/F4/80 + M1 macrophages in grafts of C57BL/6J recipients following both syngeneic and allogeneic transplantation. However, in BALB/c-recipient mice only sparse M1 macrophages were detectable (CD38 + M1 macrophages relative to all F4/80 + cells: 75 vs. 17% [after allogeneic transplantation] and 66 vs. 17% [after syngeneic transplantation]; p < 0.05). CONCLUSIONS Allogeneic corneal transplants are rejected in BALB/c as well as C57BL/6J mice, but tissue alterations with anterior synechiae are more pronounced in C57BL/6J recipients. Following syngeneic transplantation, C57BL/6J-recipient animals show a persistent graft swelling with increased numbers of CD38+/F4/80 + M1 macrophages in grafted tissue, in contrast to the common model using BALB/c-recipient mice. Our data strongly suggest that strain-dependent differences convey different innate immune responses in BALB/c and C57BL/6J strains. Accordingly, in murine keratoplasty experiments, the mouse line of both donor and recipient animals must be carefully considered. C57BL/6J-recipient mice might be particularly suited to study corneal graft rejection in a clinical setting considered "high risk."
Collapse
Affiliation(s)
- Tim Bleul
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Xinyu Zhuang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Antonia Hildebrand
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,
| |
Collapse
|
18
|
Dos Santos UR, Costa MC, de Freitas GJC, de Oliveira FS, Santos BR, Silva JF, Santos DA, Dias AAM, de Carvalho LD, Augusto DG, Dos Santos JL. Exposition to Biological Control Agent Trichoderma stromaticum Increases the Development of Cancer in Mice Injected With Murine Melanoma. Front Cell Infect Microbiol 2020; 10:252. [PMID: 32547964 PMCID: PMC7272596 DOI: 10.3389/fcimb.2020.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/30/2020] [Indexed: 11/29/2022] Open
Abstract
Biological control agents (BCA) are an alternative to chemical pesticides and an emerging strategy to safely eliminate plant pathogens. Trichoderma spp. are the most common fungi used as BCAs. They produce spores that are released into the air and can potentially interact with immune system of mammals. We previously showed that Trichoderma affects expression of genes encoding pattern recognition receptors (PRRs) and cytokines in mice. PRRs are involved in the recognition of microorganisms and can lead to pro-tumoral signaling. Here, we evaluated if mice injected with low doses of murine melanoma exhibited increased development of lung tumor when treated with conidia of T. stromaticum. Mice treated with T. stromaticum and inoculated with B16-F10 melanoma cells exhibited significant increase in tumor uptake (p = 0.006) and increased number of visible nodules in the lungs (p = 0.015). We also analyzed mRNA expression levels of genes encoding PRRs in lung of mice exposed to T. stromaticum and demonstrated that mice treated with T. stromaticum conidia exhibited lower expression levels of Clec7a and increased expression of Tlr4 (toll like receptor 4) compared to non-treated controls. The expression levels of Clec7a and Tlr2 were increased in mice treated with T. stromaticum and inoculated with murine melanoma compared to controls only inoculated with melanoma. Our results demonstrate that intranasal exposition to T. stromaticum increases tumor in the B16-F10 model, which may raise concerns regarding the safety of its use in agriculture.
Collapse
Affiliation(s)
- Uener R Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, ICB - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo J C de Freitas
- Departamento de Microbiologia, ICB - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia S de Oliveira
- Departamento de Genética, Ecologia e Evolução - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bianca R Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Juneo F Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, ICB - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriana A M Dias
- Departamento de Genética, Ecologia e Evolução - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana D de Carvalho
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Jane L Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
19
|
Scherer A, Stephens VR, McGivney GR, Gutierrez WR, Laverty EA, Knepper-Adrian V, Dodd RD. Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs. Genes (Basel) 2020; 11:E583. [PMID: 32456131 PMCID: PMC7288323 DOI: 10.3390/genes11050583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype-phenotype relationships, but these interactions can be difficult to identify using traditional Cre/loxP approaches. Here, we use somatic CRISPR/Cas9 tumorigenesis approaches to determine the impact of mouse background on the biology of genetically-identical malignant peripheral nerve sheath tumors (MPNSTs) in four commonly-used inbred strains. To our knowledge, this is the first study to systematically evaluate the impact of host strain on CRISPR/Cas9-generated mouse models. Our data identify multiple strain-dependent phenotypes, including changes in tumor onset and the immune microenvironment. While BALB/c mice develop MPNSTs earlier than other strains, similar tumor onset is observed in C57BL/6, 129X1 and 129/SvJae mice. Indel pattern analysis demonstrates that indel frequency, type and size are similar across all genetic backgrounds. Gene expression and IHC analysis identify multiple strain-dependent differences in CD4+ T cell infiltration and myeloid cell populations, including M2 macrophages and mast cells. These data highlight important strain-specific phenotypes of genomically-matched MPNSTs that have implications for the design of future studies using similar in vivo gene editing approaches.
Collapse
Affiliation(s)
- Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Victoria R. Stephens
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- PREP program, University of Iowa, Iowa City, IA 52242, USA
| | - Gavin R. McGivney
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Wade R. Gutierrez
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Emily A. Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Vickie Knepper-Adrian
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| |
Collapse
|
20
|
Sugase T, Lam BQ, Danielson M, Terai M, Aplin AE, Gutkind JS, Sato T. Development and optimization of orthotopic liver metastasis xenograft mouse models in uveal melanoma. J Transl Med 2020; 18:208. [PMID: 32434572 PMCID: PMC7240939 DOI: 10.1186/s12967-020-02377-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with metastatic uveal melanoma (MUM) in the liver usually die within 1 year. The development of new treatments for MUM has been limited by the lack of diverse MUM cell lines and appropriate animal models. We previously reported that orthotopic xenograft mouse models established by direct injection of MUM cells into the liver were useful for the analysis associated with tumor microenvironment in the liver. However, considering that patients with UM metastasize to the liver hematogenously, direct liver injection model might not be suitable for investigation on various mechanisms of liver metastasis. Here, we aim to establish new orthotopic xenograft models via hematogenous dissemination of tumor cells to the liver, and to compare their characteristics with the hepatic injection model. We also determine if hepatic tumors could be effectively monitored with non-invasive live imaging. METHODS tdtTomate-labeled, patient-derived MUM cells were injected into the liver, spleen or tail vein of immunodeficient NSG mice. Tumor growth was serially assessed with In Vivo Imaging System (IVIS) images once every week. Established hepatic tumors were evaluated with CT scan and then analyzed histologically. RESULTS We found that splenic injection could consistently establish hepatic tumors. Non-invasive imaging showed that the splenic injection model had more consistent and stronger fluorescent intensity compared to the hepatic injection model. There were no significant differences in tumor growth between splenic injection with splenectomy and without splenectomy. The splenic injection established hepatic tumors diffusely throughout the liver, while the hepatic injection of tumor cells established a single localized tumor. Long-term monitoring of tumor development showed that tumor growth, tumor distribution in the liver, and overall survival depended on the number of tumor cells injected to the spleen. CONCLUSION We established a new orthotopic hepatic metastatic xenograft mouse model by splenic injection of MUM cells. The growth of orthotopic hepatic tumors could be monitored with non-invasive IVIS imaging. Moreover, we evaluated the therapeutic effect of a MEK inhibitor by using this model. Our findings suggest that our new orthotopic liver metastatic mouse model may be useful for preclinical drug screening experiments and for the analysis of liver metastasis mechanisms.
Collapse
Affiliation(s)
- Takahito Sugase
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Meggie Danielson
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Sakul A, Ozansoy M, Elibol B, Ayla Ş, Günal MY, Yozgat Y, Başağa H, Şahin K, Kazancioğlu R, Kiliç Ü. Squalene attenuates the oxidative stress and activates AKT/mTOR pathway against cisplatin-induced kidney damage in mice. Turk J Biol 2019; 43:179-188. [PMID: 31320816 PMCID: PMC6620038 DOI: 10.3906/biy-1902-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The clinical use of cisplatin, which is a first-line anticancer agent, is highly restricted due to its adverse effects on kidneys that lead to nephrotoxicity. Therefore, some potential reno-protective substances have been used in combination with cisplatin to cope with nephrotoxicity. Due to its high antitumor activity and oxygen-carrying capacity, we investigated the molecular effects of squalene against cisplatin-induced oxidative stress and kidney damage in mice. Single dose of cisplatin (7 mg/kg) was given to male Balb/c mice. Squalene (100 mg/kg/day) was administered orogastrically to mice for 10 days. Following sacrification, molecular alterations were investigated as analysis of the levels of oxidative stress index (OSI), inflammatory cytokines and cell survival-related proteins in addition to histopathological examinations in mice kidney tissue. The level OSI and Interferon-gamma (IFN-γ) decreased in the cisplatin and squalene cotreated mice compared to cisplatin-treated mice. Squalene treatment also increased the activation of protein kinase B (AKT). Furthermore, cisplatin-induced inactivation of mammalian target of rapamycin (mTOR) and histopathological damages were reversed by squalene. It may be suggested that squalene ameliorated the cisplatin-induced histopathological damages in the kidney through activation of AKT/mTOR signaling pathway by regulating the balance of the redox system due to its antioxidative effect.
Collapse
Affiliation(s)
- Arzu Sakul
- Department of Medical Pharmacology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Ozansoy
- Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Şule Ayla
- Department of Histology and Embryology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Mehmet Yalçın Günal
- Department of Physiology, Alanya Alaaddin Keykubat University School of Medicine, Antalya, Turkey
| | - Yasemin Yozgat
- Regenerative and Restorative Medical Research Center (REMER), İstanbul Medipol University, İstanbul, Turkey
| | - Hüveyda Başağa
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Rümeyza Kazancioğlu
- Department of Nephrology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Ülkan Kiliç
- Department of Nephrology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| |
Collapse
|
23
|
Han W, Duan Z. Roles of exosomes in liver metastases: Novel diagnosis and treatment choices. J Cell Physiol 2019; 234:21588-21600. [PMID: 31093975 DOI: 10.1002/jcp.28785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023]
Abstract
Tumors tend to metastasize to the liver. Premetastatic niche formation is a vital step in liver metastasis. Tumor-derived exosomes can influence premetastatic niche formation from three aspects: vascular leakiness and angiogenesis, recruitment of nonresident cells, and changes in local resident cells. Exosomes from other tissues, such as mesenchymal stem cell-derived exosomes and engineered exosomes, also have therapeutic potential, but further research on these exosomes is required. Based on the mechanism of premetastatic niche formation, we summarize the therapeutic and diagnostic potential of exosomes in inhibiting liver metastases in this review in an attempt to provide new avenues for the prevention and treatment of liver metastases.
Collapse
Affiliation(s)
- Weijia Han
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Liver Failure, Artificial Liver Treatment and Research, Beijing, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Liver Failure, Artificial Liver Treatment and Research, Beijing, China
| |
Collapse
|
24
|
Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, Leibing T, Mohammadi MM, Heineke J, Sticht C, Olsavszky V, Koch PS, Géraud C, Goerdt S. Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Res 2018; 79:598-610. [PMID: 30530502 DOI: 10.1158/0008-5472.can-18-1752] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/14/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
The interaction of tumor cells with organ-specific endothelial cells (EC) is an important step during metastatic progression. Notch signaling in organ-specific niches has been implicated in mediating opposing effects on organotropic metastasis to the lungs and the liver, respectively. In this study, we scrutinized the role of endothelial Notch activation during liver metastasis. To target hepatic EC (HEC), a novel EC subtype-specific Cre driver mouse was generated. Clec4g-Cretg/wt mice were crossed to Rosa26N1ICD-IRES-GFP to enhance Notch signaling in HEC (NICDOE-HEC). In NICDOE-HEC mice, hepatic metastasis of malignant melanoma and colorectal carcinoma was significantly reduced. These mice revealed reduced liver growth and impaired metabolic zonation due to suppression of hepatic angiocrine Wnt signaling. Hepatic metastasis, however, was not controlled by angiocrine Wnt signaling, as deficiency of the Wnt cargo receptor Wls in HEC of WlsHEC-KO mice did not affect hepatic metastasis. In contrast, the hepatic microvasculature in NICDOE-HEC mice revealed a special form of sinusoidal capillarization, with effacement of endothelial zonation functionally paralleled by reduced tumor cell adhesion in vivo. Notably, expression of endothelial adhesion molecule ICAM1 by HEC was significantly reduced. Treatment with an anti-ICAM1 antibody significantly inhibited tumor cell adhesion to HEC in wild-type mice confirming that Notch controls hepatic metastasis via modulation of HEC adhesion molecules. As endothelial Notch activation in the lung has been shown to promote lung metastasis, tumor therapy will require approaches that target Notch in an organ-, cell type-, and context-specific manner. SIGNIFICANCE: Manipulation of Notch signaling in the endothelium has opposing, organ-specific effects on metastasis to the lung and the liver, demonstrating that this pathway should be targeted in a cell- and context-specific fashion.
Collapse
Affiliation(s)
- Sebastian A Wohlfeil
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Verena Häfele
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Bianca Dietsch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Johanna Zierow
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Mona Malek Mohammadi
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Joerg Heineke
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany. .,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|