1
|
Zhang W, Kong D, Zhang X, Hu L, Nian Y, Shen Z. T cell aging and exhaustion: Mechanisms and clinical implications. Clin Immunol 2025; 275:110486. [PMID: 40120658 DOI: 10.1016/j.clim.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
T cell senescence and exhaustion represent critical aspects of adaptive immune system dysfunction, with profound implications for health and the development of disease prevention and therapeutic strategies. These processes, though distinct, are interconnected at the molecular level, leading to impaired effector functions and reduced proliferative capacity of T cells. Such impairments increase susceptibility to diseases and diminish the efficacy of vaccines and treatments. Importantly, T cell senescence and exhaustion can dynamically influence each other, particularly in the context of chronic diseases. A deeper understanding of the molecular mechanisms underlying T cell senescence and exhaustion, as well as their interplay, is essential for elucidating the pathogenesis of related diseases and restoring dysfunctional immune responses. This knowledge will pave the way for the development of targeted therapeutic interventions and strategies to enhance immune competence. This review aims to summarize the characteristics, mechanisms, and disease associations of T cell senescence and exhaustion, while also delineating the distinctions and intersections between these two states to enhance our comprehension.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Lu Hu
- Tianjin Medical University First Central Clinical College, Tianjin, China.
| | - Yeqi Nian
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China; Department of Kidney Transplant, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
2
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2025; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
3
|
Graham PT, Nowak AK, Cornwall SMJ, Larma I, Nelson DJ. The STING agonist, DMXAA, reduces tumor vessels and enhances mesothelioma tumor antigen presentation yet blunts cytotoxic T cell function in a murine model. Front Immunol 2022; 13:969678. [PMID: 36466911 PMCID: PMC9716460 DOI: 10.3389/fimmu.2022.969678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 08/22/2023] Open
Abstract
We assessed the murine Stimulator of Interferon Genes (STING) agonist, DMXAA, for anti-mesothelioma potential using the AE17-sOVA model that expresses ovalbumin (OVA) as a neo tumor antigen. Dose response experiments alongside testing different routes of administration identified a safe effective treatment regimen that induced 100% cures in mice with small or large tumors. Three doses of 25mg/kg DMXAA given intra-tumorally every 9 days induced tumor regression and long-term survival (>5 months). Re-challenge experiments showed that tumor-free mice developed protective memory. MTT and propidium-iodide assays showed that DMXAA exerted direct cytotoxic effects at doses >1mg/ml on the murine AE17 and AB1 mesothelioma cell lines. In-vivo studies using a CFSE-based in-vivo proliferation assay showed that DMXAA improved tumor-antigen presentation in tumor-draining lymph nodes, evidenced by OVA-specific OT-1 T cells undergoing more divisions. An in-vivo cytotoxic T lymphocyte (CTL) assay showed that DMXAA blunted the lytic quality of CTLs recognizing the dominant (SIINFEKL) and a subdominant (KVVRFDKL) OVA epitopes. DMXAA reduced tumor vessel size in-vivo and although the proportion of T cells infiltrating tumors reduced, the proportion of tumor-specific T cells increased. These data show careful dosing and treatment protocols reduce mesothelioma cell viability and modulate tumor vessels such that tumor-antigen specific CTLs access the tumor site. However, attempts to enhance DMXAA-induced anti-tumor responses by combination with an agonist anti-CD40 antibody or IL-2 reduced efficacy. These proof-of-concept data suggest that mesothelioma patients could benefit from treatment with a STING agonist, but combination with immunotherapy should be cautiously undertaken.
Collapse
Affiliation(s)
- Peter T. Graham
- School of Medicine, Curtin University, Bentley, WA, Australia
| | - Anna K. Nowak
- Medical School, University of Western Australia, Nedlands, WA, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA, Australia
- Institute of Respiratory Health, Nedlands, WA, Australia
| | | | - Irma Larma
- Becton Dickinson Pty Limited, Osborne Park, WA, Australia
| | - Delia J. Nelson
- School of Medicine, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
4
|
Mould RC, van Vloten JP, AuYeung AWK, Walsh SR, de Jong J, Susta L, Mutsaers AJ, Petrik JJ, Wood GA, Wootton SK, Karimi K, Bridle BW. Using a Prime-Boost Vaccination Strategy That Proved Effective for High Resolution Epitope Mapping to Characterize the Elusive Immunogenicity of Survivin. Cancers (Basel) 2021; 13:cancers13246270. [PMID: 34944889 PMCID: PMC8699342 DOI: 10.3390/cancers13246270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The generation of tumor-specific T cells remains a pillar of modern cancer immunotherapy. Exogenous vaccines often rely on targeting tumor-associated antigens. The anti-apoptotic protein survivin has been deemed a high priority target due to its overexpression in a wide variety of tumor types. To support the analysis of tumor-associated T cell responses, optimization of epitope mapping would be valuable. A heterologous prime-boost vaccination strategy was designed to target survivin to induce anti-tumor immune responses. However, survivin-specific T cell responses could not be detected in mice. Potential mechanisms to explain this failure were explored. To confirm the robustness of the vaccination platform, enhanced green fluorescent protein (eGFP) was targeted since it has been defined as a protein with relatively low immunogenicity. In this context the vaccination strategy uncovered novel T cell epitopes from eGFP in two strains of mice. This research highlighted the utility of the vaccine platform to triage potential target antigens based on their immunogenicity. Abstract Survivin is a member of the inhibitor of apoptosis family of proteins and has been reported to be highly expressed in a variety of cancer types, making it a high priority target for cancer vaccination. We previously described a heterologous prime-boost strategy using a replication-deficient adenovirus, followed by an oncolytic rhabdovirus that generates unprecedented antigen-specific T cell responses. We engineered each vector to express a mutated version of full-length murine survivin. We first sought to uncover the complete epitope map for survivin-specific T cell responses in C57BL/6 and BALB/c mice by flow cytometry. However, no T cell responses were detected by intracellular cytokine staining after re-stimulation of T cells. Survivin has been found to be expressed by activated T cells, which could theoretically cause T cell-mediated killing of activated T cells, known as fratricide. We were unable to recapitulate this phenomenon in experiments. Interestingly, the inactivated survivin construct has been previously shown to directly kill tumor cells in vitro. However, there was no evidence in our models of induction of death in antigen-presenting cells due to treatment with a survivin-expressing vector. Using the same recombinant virus-vectored prime-boost strategy targeting the poorly immunogenic enhanced green fluorescent protein proved to be a highly sensitive method for mapping T cell epitopes, particularly in the context of identifying novel epitopes recognized by CD4+ T cells. Overall, these results suggested there may be unusually robust tolerance to survivin in commonly used mouse strains that cannot be broken, even when using a particularly potent vaccination platform. However, the vaccination method shows great promise as a strategy for identifying novel and subdominant T cell epitopes.
Collapse
Affiliation(s)
- Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Amanda W. K. AuYeung
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Scott R. Walsh
- McMaster Immunology Research Centre, McMaster University Hamilton, Hamilton, ON L8S 3L8, Canada;
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Anthony J. Mutsaers
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.J.M.); (J.J.P.)
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.J.M.); (J.J.P.)
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.C.M.); (J.P.v.V.); (A.W.K.A.); (J.d.J.); (L.S.); (G.A.W.); (S.K.W.); (K.K.)
- Correspondence: ; Tel.: +51-9824-4120 (ext. 54657)
| |
Collapse
|
5
|
Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine 2021; 68:103409. [PMID: 34049248 PMCID: PMC8170103 DOI: 10.1016/j.ebiom.2021.103409] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
The failure of T cells to eradicate tumour cells in the tumour microenvironment is mainly due to the dysfunction of T cells. Senescent T cells, with defects in proliferation and effector functions, accumulate in ageing, chronic viral infections, and autoimmune disorders where antigen stimulation persists. Increasing evidence suggests that inducing T cell senescence is a key strategy used by malignant tumours to evade immune surveillance. In this review, we summarize the general features, functional regulation, and signalling network of senescent T cells in tumour development and highlight their potential as prognostic biomarkers in multiple cancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Moreover, we discuss possible therapeutic strategies for preventing or rejuvenating senescence in tumour-specific T cells. Understanding these critical issues may provide novel strategies to enhance cancer immunotherapy.
Collapse
|
6
|
Duong L, Radley HG, Lee B, Dye DE, Pixley FJ, Grounds MD, Nelson DJ, Jackaman C. Macrophage function in the elderly and impact on injury repair and cancer. IMMUNITY & AGEING 2021; 18:4. [PMID: 33441138 PMCID: PMC7805172 DOI: 10.1186/s12979-021-00215-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.
Collapse
Affiliation(s)
- L Duong
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - H G Radley
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - B Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - D E Dye
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - F J Pixley
- School of Biomedical Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - M D Grounds
- School of Human Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - D J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - C Jackaman
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia.
| |
Collapse
|
7
|
Drijvers JM, Sharpe AH, Haigis MC. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 2020; 9:e62420. [PMID: 33170123 PMCID: PMC7655106 DOI: 10.7554/elife.62420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Average age and obesity prevalence are increasing globally. Both aging and obesity are characterized by profound systemic metabolic and immunologic changes and are cancer risk factors. The mechanisms linking age and body weight to cancer are incompletely understood, but recent studies have provided evidence that the anti-tumor immune response is reduced in both conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy, is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic dysfunction.
Collapse
Affiliation(s)
- Jefte M Drijvers
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Huff AL, Evgin L, Thompson J, Kottke T, Driscoll CB, Tonne J, Wongthida P, Schuelke M, Shim KG, Mer G, Ramirez-Alvarado M, Vile R. Vesicular Stomatitis Virus Encoding a Destabilized Tumor Antigen Improves Activation of Anti-tumor T Cell Responses. Mol Ther 2020; 28:2540-2552. [PMID: 32877695 DOI: 10.1016/j.ymthe.2020.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Enhancing the immunogenicity of tumor-associated antigens would represent a major advance for anti-tumor vaccination strategies. Here, we investigated structure-directed antigen destabilization as a strategy to improve the degradation, immunogenic epitope presentation, and T cell activation against a vesicular stomatitis virus (VSV)-encoded tumor antigen. We used the crystal structure of the model antigen ovalbumin to identify charge-disrupting amino acid mutations that were predicted to decrease the stability of the protein. One mutation, OVA-C12R, significantly reduced the half-life of the protein and was preferentially degraded in a 26-S proteasomal-dependent manner. The destabilized ovalbumin protein exhibited enhanced presentation of the major histocompatibility complex (MHC) class I immunogenic epitope, SIINFEKL, on the surface of B16F10 cells or murine bone marrow-derived dendritic cells (BMDCs) in vitro. Enhanced presentation correlated with better recognition by cognate CD8 OT-I T cells as measured by activation, proliferation, and effector cytokine production. Finally, VSV encoding the degradation-prone antigen was better able to prime an antigen ovalbumin-specific CD8 T cell response in vivo without altering the anti-viral CD8 T cell response. Our studies highlight that not only is the choice of antigen in cancer vaccines of importance, but that emphasis should be placed on modifying antigen quality to ensure optimal priming of anti-tumor responses.
Collapse
Affiliation(s)
- Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher B Driscoll
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marina Ramirez-Alvarado
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James's University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK.
| |
Collapse
|