1
|
Li X, Lv X, Li H, Zhang G, Long Y, Li K, Fan Y, Jin D, Zhou F, Liu H. Undifferentially Expressed CXXC5 as a Transcriptionally Regulatory Biomarker of Breast Cancer. Adv Biol (Weinh) 2023; 7:e2300189. [PMID: 37423953 DOI: 10.1002/adbi.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Indexed: 07/11/2023]
Abstract
This work hypothesizes that some genes undergo radically changed transcription regulations (TRs) in breast cancer (BC), but don't show differential expressions for unknown reasons. The TR of a gene is quantitatively formulated by a regression model between the expression of this gene and multiple transcription factors (TFs). The difference between the predicted and real expression levels of a gene in a query sample is defined as the mqTrans value of this gene, which quantitatively reflects its regulatory changes. This work systematically screens the undifferentially expressed genes with differentially expressed mqTrans values in 1036 samples across five datasets and three ethnic groups. This study calls the 25 genes satisfying the above hypothesis in at least four datasets as dark biomarkers, and the strong dark biomarker gene CXXC5 (CXXC Finger Protein 5) is even supported by all the five independent BC datasets. Although CXXC5 does not show differential expressions in BC, its transcription regulations show quantitative associations with BCs in diversified cohorts. The overlapping long noncoding RNAs (lncRNAs) may have contributed their transcripts to the expression miscalculations of dark biomarkers. The mqTrans analysis serves as a complementary view of the transcriptome-based detections of biomarkers that are ignored by many existing studies.
Collapse
Affiliation(s)
- Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiaoying Lv
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Haijun Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yusi Fan
- College of Software, Jilin University, Changchun, 130012, China
| | - Dawei Jin
- Research Institute of Guizhou Huada Life Big Data, Guiyang, Guizhou, 550025, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Yuan M, Pei J, Li R, Tian L, He X, Li Y. CD40LG as a Prognostic Molecular Marker Regulates Tumor Microenvironment Through Immune Process in Breast Cancer. Int J Gen Med 2021; 14:8833-8846. [PMID: 34858051 PMCID: PMC8630470 DOI: 10.2147/ijgm.s336813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose Breast cancer (BRCA) is the second most common malignancy in the world and the most common in women. Here, we utilized publicly available BRCA dataset to investigate potential prognosis-related genes through integrated bioinformatics analysis. Materials and Methods BRCA dataset was obtained from the Cancer Genome Atlas (TCGA) database. The ESTIMATE algorithm was used to calculate the ImmuneScores and StromalScores of the samples and then divided them into high- and low-score groups based on the median score. Common differentially expressed genes (DEGs) were identified through differential expression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The core prognostic genes were the intersection of hub genes from PPI network and prognostic genes from univariate Cox proportional hazard regression analysis. Finally, the CIBERSORT algorithm was used to calculate proportions of 22 tumor-infiltrating immune cells (TICs) in BRCA samples. Results A total of 486 DEGs were identified. These genes were mainly enriched in immune-related pathways. Crossover genes between the hub genes and the prognostic genes were CD2 and CD40LG. CD40LG was further investigated in this study. CD40LG was downregulated in BRCA samples compared with normal samples, and a lower CD40LG expression was associated with advanced tumor stages and a poor prognosis. CD40LG was shown to be involved in immune-related pathways of BRCA by Gene Set Enrichment Analysis. Finally, 14 TICs were found to have a close relationship with CD40LG. Conclusion CD40LG was found to be a core prognostic gene related to tumor microenvironment and deeply involved in immune-related pathways in BRCA. Our findings may provide new insights for exploring the molecular mechanisms of BRCA and developing new immunotherapies for the disease.
Collapse
Affiliation(s)
- Manqiu Yuan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jianying Pei
- Institute of Clinical Medicine, Gansu Province Maternal and Child-Care Hospital, Lanzhou, Gansu, People's Republic of China
| | - Ruihao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lirong Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xin He
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yanping Li
- Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
4
|
Jin S, Wang Q, Wu H, Pang D, Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark Res 2021; 9:71. [PMID: 34563270 PMCID: PMC8466906 DOI: 10.1186/s40364-021-00318-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.
Collapse
Affiliation(s)
- Shengye Jin
- Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China. .,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China.
| |
Collapse
|
5
|
Wang H, Xu F, Zhang M, Liu J, Wang F, Zhao Q. A Prognostic Immunoscore for Relapse-Free Survival Prediction in Colorectal Cancer. DNA Cell Biol 2020; 39:1181-1193. [PMID: 32397747 DOI: 10.1089/dna.2020.5490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|