1
|
Hirner JP, Rajeh A, Semenov YR, Kwatra SG, LeBoeuf NR. A retrospective cohort study of the time between prior antibiotics and checkpoint inhibitors and association with survival in melanoma patients. J Am Acad Dermatol 2025; 92:878-879. [PMID: 39549842 PMCID: PMC11928268 DOI: 10.1016/j.jaad.2024.10.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Jesse P Hirner
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Ahmad Rajeh
- Harvard Medical School, Boston, Massachusetts
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts; Department of Dermatology, Johns Hopkins University, Baltimore, Maryland
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland
| | - Nicole R LeBoeuf
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Colli Cruz C, Moura Nascimento Santos MJ, Wali S, Varatharajalu K, Thomas A, Wang Y. Gastrointestinal toxicities associated with immune checkpoint inhibitors therapy: risks and management. Immunotherapy 2025; 17:293-303. [PMID: 40055892 PMCID: PMC12013428 DOI: 10.1080/1750743x.2025.2473305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment by boosting the immune system's ability to target tumors. However, they can also cause serious side effects, particularly in the digestive system. These include immune-related diarrhea, inflammation of the intestines and, less commonly, inflammation of the stomach or esophagus. This review underscores the importance of early detection, accurate diagnosis, and timely treatment to improve patient outcomes. It also highlights the need for further research to develop strategies to reduce gastrointestinal toxicities and enhance the overall effectiveness of ICIs in cancer therapy.
Collapse
Affiliation(s)
- Carolina Colli Cruz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sharada Wali
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishnavathana Varatharajalu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anusha Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Bonnefin C, Schneider S, Gérard E, Dutriaux C, Ferte T, Prey S, Guicheney M, Ducharme O, Pedeboscq S, Beylot-Barry M, Pham-Ledard A. Antibiotics use decreases survival in cutaneous squamous cell carcinoma patients receiving immune checkpoint inhibitors. Eur J Cancer 2025; 217:115223. [PMID: 39874910 DOI: 10.1016/j.ejca.2025.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) have become the first-line therapy in patients with advanced cutaneous squamous cell carcinoma (cSCC). Antibiotics (ATB) have been reported to reduce ICI response in cancers, but this has not been evaluated in cSCC. AIM To evaluate ATB exposure at the onset of ICI in cSCC patients and to analyze its impact on outcome. METHODS This single-center retrospective study included all patients who started anti-PD-1 for cSCC between March 2019 and July 2023. Exposure to ATB within 3 months prior and after the onset of ICI (ATB 3-3), including patients exposed within 1 month prior and after (ATB 1-1) were recorded. Response to ICI and survival were compared between patients with or without ATB exposure. RESULTS Among 104 patients included, 45 % were classified into ATB 3-3 subgroup, and 20 % to ATB 1-1. Disease control rate at 3 months were lower in both ATB 1-1 and ATB 3-3 subgroups, compared to their control group (p = 0.02 and 0.03, respectively). The overall survival and disease specific survival were lower in the ATB 1-1 subgroup, compared to control group (p = 0.04 and p = 0.01, respectively). Median progression free survival was 127 days in ATB 1-1 group, significantly lower than the control group (not reached), p = 0.005. CONCLUSION ATB intake was very frequent at ICI initiation in cSCC patients. In our cohort, ATB use within 1 month before or after ICI initiation significantly impacted survival, highlighting the need for caution when prescribing antibiotics in this population.
Collapse
Affiliation(s)
- C Bonnefin
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - S Schneider
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - E Gérard
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - C Dutriaux
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - T Ferte
- Public Health Centre, Methodological Support Unit for Clinical and Epidemiological Research (USMR), CHU Bordeaux, Bordeaux F-33000, France
| | - S Prey
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - M Guicheney
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - O Ducharme
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France
| | - S Pedeboscq
- Department of Pharmacy, CHU Bordeaux, Bordeaux F-33000, France
| | - M Beylot-Barry
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France
| | - A Pham-Ledard
- Department of Dermatology, CHU Bordeaux, Bordeaux F-33000, France; Bordeaux Institute of Oncology, INSERM U1312, Team Translational Research on Oncodermatology and Orphean Skin Diseases, Univ. Bordeaux, Bordeaux F-33000, France.
| |
Collapse
|
4
|
Zhang F, Ding Z, Lian Y, Yang X, Hu P, Liu Y, Xu L, Li Z, Qiu H. Prophylactic antibiotic use is associated with better clinical outcomes in gastric cancer patients receiving immunotherapy. Oncologist 2025; 30:oyae362. [PMID: 40036772 PMCID: PMC11879193 DOI: 10.1093/oncolo/oyae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The relationship between antibiotic treatment and immunotherapy efficacy is complex. METHODS This study was a single-center study. History of antibiotic use in gastric cancer (GC) patients within 1 or 3 months prior to immunotherapy was collected. Patients were categorized into 3 groups according to whether they had used antibiotics prior to immunotherapy: none, prophylactic use, and infection. RESULTS A total of 252 GC patients received immunotherapy, of which 38.5% (97/252) received antibiotic treatment within 1 month before immunotherapy (prophylactic use in 72.2% of patients) and 48.8% (123/252) received antibiotic treatment within 3 months before immunotherapy (prophylactic use in 74.8% of patients). The prophylactic use of antibiotic within 1 month prior to immunotherapy significantly improved overall survival (OS) compared with patients who received anti-infective therapy and had no history of antibiotic use (prophylactic vs infection: OS, 22.6 vs 9.7 m, HR, 0.53, 95% CI, 0.27-1.07; prophylactic vs none: OS, 22.6 vs 14.7 m, HR, 0.57; 95% CI, 0.39-0.83). The use of antibiotics in infected patients did not increase the risk of death in patients compared with those who did not use antibiotics. Prophylactic antibiotic use within 1 month before immunotherapy is an independent prognostic factor for OS. CONCLUSIONS Prophylactic use of antibiotics is associated with better prognosis in GC patients receiving immunotherapy. Therefore, there is no necessity to delay the use of immune checkpoint inhibitors in this group of patients.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zixuan Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yongping Lian
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Xiao Yang
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Yongqing Liu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zhou Li
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| |
Collapse
|
5
|
Hou T, Huang X, Lai J, Zhou D. Intra-tumoral bacteria in breast cancer and intervention strategies. Adv Drug Deliv Rev 2025; 217:115516. [PMID: 39828126 DOI: 10.1016/j.addr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The microbiome, consisting of a wide range of both beneficial and harmful microorganisms, is vital to various physiological and pathological processes in the human body, including cancer pathogenesis. Tumor progression is often accompanied by the destruction of the vascular system, allowing bacteria to circulate into the tumor area and flourish in an immunosuppressive environment. Microbes are recognized as significant components of the tumor microenvironment. Recent research has increasingly focused on the role of intra-tumoral bacteria in the onset, progression, and treatment of breast cancer-the most prevalent cancer among women. This review elucidates the potential mechanisms by which intra-tumoral bacteria impact breast cancer and discusses different therapeutic approaches aimed at targeting these bacteria. It provides essential insights for enhancing existing treatment paradigms while paving the way for novel anticancer interventions. As our understanding of the microbiome's intricate relationship with cancer deepens, it opens avenues for groundbreaking strategies that could redefine oncology.
Collapse
Affiliation(s)
- Ting Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Radoš L, Golčić M, Mikolašević I. The Relationship Between the Modulation of Intestinal Microbiota and the Response to Immunotherapy in Patients with Cancer. Biomedicines 2025; 13:96. [PMID: 39857680 PMCID: PMC11761299 DOI: 10.3390/biomedicines13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The intestinal microbiota is an important part of the human body, and its composition can affect the effectiveness of immunotherapy. In the last few years, the modulation of intestinal microbiota in order to improve the effectiveness of immunotherapy has become a current topic in the scientific community, but there is a lack of research in this area. In this review, the goal was to analyze the current relevant literature related to the modulation of intestinal microbiota and the effectiveness of immunotherapy in the treatment of cancer. The effects of antibiotics, probiotics, diet, and fecal microbial transplantation were analyzed separately. It was concluded that the use of antibiotics, especially broad-spectrum types or larger quantities, causes dysbiosis of the intestinal microbiota, which can reduce the effectiveness of immunotherapy. While dysbiosis could be repaired by probiotics and thus improve the effectiveness of immunotherapy, the use of commercial probiotics without evidence of intestinal dysbiosis has not yet been sufficiently tested to confirm its safety for cancer for immunotherapy-treated cancer patients. A diet consisting of sufficient amounts of fiber, as well as a diet with higher salt content positively correlates with the success of immunotherapy. Fecal transplantation is a safe and realistic adjuvant option for the treatment of cancer patients with immunotherapy, but more clinical trials are necessary. Modulating the microbiota composition indeed changes the effectiveness of immunotherapy, but in the future, more human studies should be organized to precisely determine the types and procedures of microbiota modulation.
Collapse
Affiliation(s)
- Laura Radoš
- Department for Emergency Medicine of Primorsko-Goranska County, 51000 Rijeka, Croatia;
| | - Marin Golčić
- Clinic for Tumors, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia;
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Clinic for Tumors, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia;
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Haddad A, Holder AM. Microbiome and Immunotherapy for Melanoma: Are We Ready for Clinical Application? Hematol Oncol Clin North Am 2024; 38:1061-1070. [PMID: 38908958 DOI: 10.1016/j.hoc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The microbiome plays a substantial role in the efficacy of immune checkpoint blockade (ICB) in patients with metastatic melanoma. While the exact gut microbiome composition and the pathways involved in this interaction are not clearly delineated, novel studies and ongoing clinical trials are likely to reveal findings applicable to the clinical setting for the prediction and optimization of response to ICB. Nevertheless, lifestyle modifications, including high fiber diet, avoidance of unnecessary antibiotic prescriptions, and careful use of probiotics may be helpful to optimize the "health" of the gut microbiome and potentially enhance response to ICB in patients with melanoma.
Collapse
Affiliation(s)
- Antony Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA. https://twitter.com/Haddad_Antony
| | - Ashley M Holder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Messaoudene M, Ferreira S, Saint-Lu N, Ponce M, Truntzer C, Boidot R, Le Bescop C, Loppinet T, Corbel T, Féger C, Bertrand K, Elkrief A, Isaksen M, Vitry F, Sablier-Gallis F, Andremont A, Bod L, Ghiringhelli F, de Gunzburg J, Routy B. The DAV132 colon-targeted adsorbent does not interfere with plasma concentrations of antibiotics but prevents antibiotic-related dysbiosis: a randomized phase I trial in healthy volunteers. Nat Commun 2024; 15:8083. [PMID: 39278946 PMCID: PMC11402973 DOI: 10.1038/s41467-024-52373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The deleterious impact of antibiotics (ATB) on the microbiome negatively influences immune checkpoint inhibitors (ICI) response in patients with cancer. We conducted a randomized phase I study (EudraCT:2019-A00240-57) with 148 healthy volunteers (HV) to test two doses of DAV132, a colon-targeted adsorbent, alongside intravenous ceftazidime-avibactam (CZA), piperacillin-tazobactam (PTZ) or ceftriaxone (CRO) and a group without ATB. The primary objective of the study was to assess the effect of DAV132 on ATB plasma concentrations and both doses of DAV132 did not alter ATB levels. Secondary objectives included safety, darkening of the feces, and fecal ATB concentrations. DAV132 was well tolerated, with no severe toxicity and similar darkening at both DAV132 doses. DAV132 led to significant decrease in CZA or PTZ feces concentration. When co-administered with CZA or PTZ, DAV132 preserved microbiome diversity, accelerated recovery to baseline composition and protected key commensals. Fecal microbiota transplantation (FMT) in preclinical cancer models in female mice from HV treated with CZA or PTZ alone inhibited anti-PD-1 response, while transplanted samples from HV treated with ATB + DAV132 circumvented resistance to anti-PD-1. This effect was linked to activated CD8+ T cell populations in the tumor microenvironment. DAV132 represents a promising strategy for overcoming ATB-related dysbiosis and further studies are warranted to evaluate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Meriem Messaoudene
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | - Mayra Ponce
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Romain Boidot
- Molecular Biology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
| | | | | | | | - Céline Féger
- Da Volterra, Paris, France
- Medical, EMI Biotech, Paris, France
| | | | - Arielle Elkrief
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Hemato-Oncology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | | | | | | | | | - Lloyd Bod
- Krantz Family Cancer Center, Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - François Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Cancer Center-Unicancer, Dijon, France
| | | | - Bertrand Routy
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Hemato-Oncology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
| |
Collapse
|
9
|
Ryan T, Ling S, Trinh A, Segal JP. The role of the microbiome in immune checkpoint inhibitor colitis and hepatitis. Best Pract Res Clin Gastroenterol 2024; 72:101945. [PMID: 39645281 DOI: 10.1016/j.bpg.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors have revolutionised management for a variety of different types of malignancies. However, gastrointestinal adverse effects, in particular colitis and hepatitis, are relatively common with up to 30 % of patients being affected. The gut microbiome has emerged as a potential contributor to both the effectiveness of immune checkpoint inhibitors and their side effects. This review will attempt to examine the impact the microbiome has on adverse effects as a result of immune checkpoint inhibitors as well as the potential for manipulation of the microbiome as a form of management for immune mediated colitis.
Collapse
Affiliation(s)
- Thomas Ryan
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| | - Sophia Ling
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Andrew Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan P Segal
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
10
|
Bum Lee J, Huang Y, Oya Y, Nutzinger J, LE Ang Y, Sooi K, Chul Cho B, Soo RA. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer 2024; 194:107862. [PMID: 38959670 DOI: 10.1016/j.lungcan.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Despite the efficacy of immunotherapy in non-small cell lung cancer (NSCLC), the majority of the patients experience relapse with limited subsequent treatment options. Preclinical studies of various epithelial tumors, such as melanoma and NSCLC, have shown that harnessing the gut microbiome resulted in improvement of therapeutic responses to immunotherapy. Is this review, we summarize the role of microbiome, including lung and gut microbiome in the context of NSCLC, provide overview of the mechanisms of microbiome in efficacy and toxicity of chemotherapies and immunotherapies, and address current ongoing clinical trials for NSCLC including fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yvonne LE Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
11
|
Elkrief A, Méndez-Salazar EO, Maillou J, Vanderbilt CM, Gogia P, Desilets A, Messaoudene M, Kelly D, Ladanyi M, Hellmann MD, Zitvogel L, Rudin CM, Routy B, Derosa L, Schoenfeld AJ. Antibiotics are associated with worse outcomes in lung cancer patients treated with chemotherapy and immunotherapy. NPJ Precis Oncol 2024; 8:143. [PMID: 39014160 PMCID: PMC11252311 DOI: 10.1038/s41698-024-00630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Anti-PD(L)-1 inhibition combined with platinum doublet chemotherapy (Chemo-IO) has become the most frequently used standard of care regimen in patients with non-small cell lung cancer (NSCLC). The negative impact of antibiotics on clinical outcomes prior to anti-PD(L)-1 inhibition monotherapy (IO) has been demonstrated in multiple studies, but the impact of antibiotic exposure prior to initiation of Chemo-IO is controversial. We assessed antibiotic exposures at two time windows: within 60 days prior to therapy (-60 d window) and within 60 days prior to therapy and 42 days after therapy (-60 + 42d window) in 2028 patients with advanced NSCLC treated with Chemo-IO and IO monotherapy focusing on objective response rate (ORR: rate of partial response and complete response), progression-free survival (PFS), and overall survival (OS). We also assessed impact of antibiotic exposure in an independent cohort of 53 patients. Univariable and multivariable analyses were conducted along with a meta-analysis from similar studies. For the -60 d window, in the Chemo-IO group (N = 769), 183 (24%) patients received antibiotics. Antibiotic exposure was associated with worse ORR (27% vs 40%, p = 0.001), shorter PFS (3.9 months vs. 5.9 months, hazard ratio [HR] 1.35, 95%CI 1.1,1.6, p = 0.0012), as well as shorter OS (10 months vs. 15 months, HR 1.50, 95%CI 1.2,1.8, p = 0.00014). After adjusting for known prognostic factors in NSCLC, antibiotic exposure was independently associated with worse PFS (HR 1.39, 95%CI 1.35,1.7, p = 0.002) and OS (HR 1.61, 95%CI 1.28,2.03, p < 0.001). Similar results were obtained in the -60 + 42d window, and also in an independent cohort. In a meta-analysis of patients with NSCLC treated with Chemo-IO (N = 4) or IO monotherapy (N = 13 studies) antibiotic exposure before treatment was associated with worse OS among all patients (n = 11,351) (HR 1.93, 95% CI 1.52, 2.45) and Chemo-IO-treated patients (n = 1201) (HR 1.54, 95% CI 1.28, 1.84). Thus, antibiotics exposure prior to Chemo-IO is common and associated with worse outcomes, even after adjusting for other factors. These results highlight the need to implement antibiotic stewardship in routine oncology practice.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- University of Montreal Research Center (CR-CHUM), Montreal, QC, Canada.
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| | | | - Jade Maillou
- University of Montreal Research Center (CR-CHUM), Montreal, QC, Canada
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pooja Gogia
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antoine Desilets
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Daniel Kelly
- Informatics Systems, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bertrand Routy
- University of Montreal Research Center (CR-CHUM), Montreal, QC, Canada
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Lisa Derosa
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Adam J Schoenfeld
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
Alotaibi FM, Albalawi IAS, Anis AM, Alotaibi H, Khashwayn S, Alshammari K, Al-Tawfiq JA. The impact of antibiotic use in gastrointestinal tumors treated with immune checkpoint inhibitors: systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1415093. [PMID: 38887674 PMCID: PMC11180829 DOI: 10.3389/fmed.2024.1415093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICI) have improved overall survival in patients with different cancer types. However, treatment efficacy varies between patients depending on several factors. Recent research suggested that antibiotic-induced dysbiosis can impair ICI efficacy. Here we review the impact of antibiotic use in clinical outcome of patients with gastrointestinal cancer treated with ICI. Methods This is a systematic review and utilized a thorough search of MEDLINE, Cochrane, Scopus, EB-SCO, Web of Science of studies published till September 2023. The aim of the study is to determine the association between antibiotic use and ICI treatment efficacy in patients with gastrointestinal cancers (GI). We utilized a meta-analysis of the association between the use of antibiotics and overall survival and progression-free survival. Results Nine studies met the inclusion criteria with a total of 2,214 patients. The most common type of cancers was hepatocellular carcinoma (HCC). The majority of the studies were retrospective, and one was collective of clinical trials. The use of antibiotics was associated with decreased both overall survival [haz-ard ratio (HR) 1.92, 95% confidence interval (CI) 1.41, 2.63] and progression-free survival [HR 1.81, 95% CI 1.29, 2.54]. Conclusion The use of antibiotics may affect clinical outcomes in patients with GI cancers treated with ICI. Further prospective studies are needed to improve the understanding of this phenomenon. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023462172.
Collapse
Affiliation(s)
- Faizah M. Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Alahsa, Saudi Arabia
| | | | - Amna M. Anis
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Engineering, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Hawazin Alotaibi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Seham Khashwayn
- King Saud Bin Abdulaziz University for Health Sciences, Alhasa, Saudi Arabia
| | - Kanan Alshammari
- Department of Oncology, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Jaffar A. Al-Tawfiq
- Department of Specialty Internal Medicine and Quality, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Wang Y, Han Y, Yang C, Bai T, Zhang C, Wang Z, Sun Y, Hu Y, Besenbacher F, Chen C, Yu M. Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment. Nat Commun 2024; 15:4194. [PMID: 38760364 PMCID: PMC11101653 DOI: 10.1038/s41467-024-48662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The role of tumor-resident intracellular microbiota (TRIM) in carcinogenesis has sparked enormous interest. Nevertheless, the impact of TRIM-targeted antibacteria on tumor inhibition and immune regulation in the tumor microenvironment (TME) remains unexplored. Herein, we report long-term relapse-free survival by coordinating antibacteria with antitumor treatment, addressing the aggravated immunosuppression and tumor overgrowth induced by TRIM using breast and prostate cancer models. Combining Ag+ release with a Fenton-like reaction and photothermal conversion, simultaneous bacteria killing and multimodal antitumor therapy are enabled by a single agent. Free of immune-stimulating drugs, the agent restores antitumor immune surveillance and activates immunological responses. Secondary inoculation and distal tumor analysis confirm lasting immunological memory and systemic immune responses. A relapse-free survival of >700 days is achieved. This work unravels the crucial role of TRIM-targeted antibacteria in tumor inhibition and unlocks an unconventional route for immune regulation in TME and a complete cure for cancer.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yaqian Han
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenhui Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tiancheng Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenggang Zhang
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaotong Wang
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ye Sun
- School of Instrumentation Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Chunying Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
14
|
Capella MP, Esfahani K. A Review of Practice-Changing Therapies in Oncology in the Era of Personalized Medicine. Curr Oncol 2024; 31:1913-1919. [PMID: 38668046 PMCID: PMC11049499 DOI: 10.3390/curroncol31040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In the past decade, a lot of insight was gathered into the composition of the host and tumor factors that promote oncogenesis and treatment resistance. This in turn has led to the ingenious design of multiple new classes of drugs, which have now become the new standards of care in cancer therapy. These include novel antibody-drug conjugates, chimeric antigen receptor T cell therapies (CAR-T), and bispecific T cell engagers (BitTE). Certain host factors, such as the microbiome composition, are also emerging not only as biomarkers for the response and toxicity to anti-cancer therapies but also as potentially useful tools to modulate anti-tumor responses. The field is slowly moving away from one-size-fits-all treatment options to personalized treatments tailored to the host and tumor. This commentary aims to cover the basic concepts associated with these emerging therapies and the promises and challenges to fight cancer.
Collapse
Affiliation(s)
- Mariana Pilon Capella
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1E9, Canada;
| | - Khashayar Esfahani
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1E9, Canada;
- St Mary’s Hospital, Departments of Medicine and Oncology, McGill University, Montreal, QC H3T 1M5, Canada
| |
Collapse
|
15
|
Chorti E, Kowall B, Hassel JC, Schilling B, Sachse M, Gutzmer R, Loquai C, Kähler KC, Hüsing A, Gilde C, Thielmann CM, Zaremba-Montenari A, Placke JM, Gratsias E, Martaki A, Roesch A, Ugurel S, Schadendorf D, Livingstone E, Stang A, Zimmer L. Association of antibiotic treatment with survival outcomes in treatment-naïve melanoma patients receiving immune checkpoint blockade. Eur J Cancer 2024; 200:113536. [PMID: 38306840 DOI: 10.1016/j.ejca.2024.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE The interaction of gut microbiome and immune system is being studied with increasing interest. Disturbing factors, such as antibiotics may impact the immune system via gut and interfere with tumor response to immune checkpoint blockade (ICB). METHODS In this multicenter retrospective cohort study exclusively treatment-naïve patients with cutaneous or mucosal melanoma treated with first-line anti-PD-1 based ICB for advanced, non-resectable disease between 06/2013 and 09/2018 were included. Progression-free (PFS), and overall survival (OS) according to antibiotic exposure (within 60 days prior to ICB and after the start of ICB vs. no antibiotic exposure) were analyzed. To account for immortal time bias, data from patients with antibiotics during ICB were analyzed separately in the time periods before and after start of antibiotics. RESULTS Among 578 patients with first-line anti-PD1 based ICB, 7% of patients received antibiotics within 60 days prior to ICB and 19% after starting ICB. Antibiotic exposure prior to ICB was associated with worse PFS (adjusted HR 1.75 [95% CI 1.22-2.52]) and OS (adjusted HR 1.64 [95% CI 1.04-2.58]) by multivariate analysis adjusting for potential confounders. The use of antibiotics after the start of ICB had no effect on either PFS (adjusted HR 1.19; 95% CI 0.89-1.60) or OS (adjusted HR 1.08; 95% CI 0.75-1.57). CONCLUSIONS Antibiotic exposure within 60 days prior to ICB seems to be associated with worse PFS and OS in melanoma patients receiving first-line anti-PD1 based therapy, whereas antibiotics after the start of ICB do not appear to affect PFS or OS.
Collapse
Affiliation(s)
- Eleftheria Chorti
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Sachse
- Department of Dermatology, Allergology and Phlebology, Bremerhaven Reinkenheide Hospital, Bremerhaven, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Hannover, Hannover Medical School, Hannover and Johannes Wesling Medical Center Ruhr University Bochum, Minden, Germany
| | - Carmen Loquai
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina C Kähler
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 7, 24105 Kiel, Germany
| | - Anika Hüsing
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Catharina Gilde
- Department of Dermatology, Skin Cancer Center Hannover, Hannover Medical School, Hannover and Johannes Wesling Medical Center Ruhr University Bochum, Minden, Germany
| | - Carl M Thielmann
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Anne Zaremba-Montenari
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Jan-Malte Placke
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Emmanouil Gratsias
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Anna Martaki
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Alexander Roesch
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Selma Ugurel
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany; National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany.
| |
Collapse
|
16
|
Iida K, Naiki T, Etani T, Nagai T, Sugiyama Y, Isobe T, Aoki M, Nozaki S, Noda Y, Shimizu N, Tomiyama N, Gonda M, Kamiya H, Kubota H, Nakane A, Ando R, Kawai N, Yasui T. Proton pump inhibitors and potassium competitive acid blockers decrease pembrolizumab efficacy in patients with metastatic urothelial carcinoma. Sci Rep 2024; 14:2520. [PMID: 38291115 PMCID: PMC10827730 DOI: 10.1038/s41598-024-53158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
We elucidated the efficacy of gut microbiome-altering drugs on pembrolizumab efficacy in patients with metastatic urothelial carcinoma (mUC). Clinical data were analyzed retrospectively from 133 patients with mUC who received second-line pembrolizumab therapy between January 2018 and January 2021, following failed platinum-based chemotherapy. We evaluated the effects of gut microbiome-altering drugs (proton pump inhibitors [PPI]/potassium-competitive acid blockers [P-CAB], H2 blockers, antibiotics, non-steroidal anti-inflammatory drugs [NSAIDs], metformin, antipsychotics, steroids, and opioids), taken by patients within 30 days before/after pembrolizumab treatment, on progression-free survival (PFS) and overall survival (OS). Fifty-one patients received PPI/P-CAB (37/14, respectively); H2 blockers, 7; antibiotics, 35; NSAIDs, 22; antipsychotics, 8; metformin, 3; steroids, 11; and opioids, 29. Kaplan-Meier curves revealed PPI or P-CAB users showed shorter PFS than non-PPI-P-CAB users (p = 0.001, p = 0.005, respectively). Multivariate analysis highlighted PPI/P-CAB use as the only independent prognostic factor for disease progression (hazards ratio: 1.71, 95% confidence interval: 1.14-2.07, p = 0.010) but not death (p = 0.177). Proton pump inhibitors/potassium-competitive acid blockers may decrease the efficacy of pembrolizumab therapy for mUC, possibly via gut microbiome modulation.
Collapse
Affiliation(s)
- Keitaro Iida
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
- Department of Urology, Gamagori City Hospital, Gamagori City, Japan
| | - Taku Naiki
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Toshiki Etani
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Nagai
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yosuke Sugiyama
- Department of Pharmacy, Nagoya City University Hospital, Nagoya, Japan
| | - Teruki Isobe
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Maria Aoki
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoshi Nozaki
- Department of Urology, Anjo Kosei Hospital, Anjo City, Japan
| | - Yusuke Noda
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
- Department of Urology, Toyota Kosei Hospital, Toyota City, Japan
| | | | - Nami Tomiyama
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
- Department of Urology, Gamagori City Hospital, Gamagori City, Japan
| | - Masakazu Gonda
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | | | - Hiroki Kubota
- Department of Urology, Kainan Hospital, Yatomi City, Japan
| | - Akihiro Nakane
- Department of Urology, Gamagori City Hospital, Gamagori City, Japan
- Department of Education and Research Center for Community Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryosuke Ando
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Noriyasu Kawai
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
17
|
Spiliopoulou P, Holanda Lopes CD, Spreafico A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2023; 13:19. [PMID: 38201222 PMCID: PMC10777980 DOI: 10.3390/cells13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic landscape of malignant melanoma has been radically reformed in recent years, with novel treatments emerging in both the field of cancer immunotherapy and signalling pathway inhibition. Large-scale tumour genomic characterization has accurately classified malignant melanoma into four different genomic subtypes so far. Despite this, only somatic mutations in BRAF oncogene, as assessed in tumour biopsies, has so far become a validated predictive biomarker of treatment with small molecule inhibitors. The biology of tumour evolution and heterogeneity has uncovered the current limitations associated with decoding genomic drivers based only on a single-site tumour biopsy. There is an urgent need to develop minimally invasive biomarkers that accurately reflect the real-time evolution of melanoma and that allow for streamlined collection, analysis, and interpretation. These will enable us to face challenges with tumour tissue attainment and process and will fulfil the vision of utilizing "liquid biopsy" to guide clinical decisions, in a manner akin to how it is used in the management of haematological malignancies. In this review, we will summarize the most recent published evidence on the role of minimally invasive biomarkers in melanoma, commenting on their future potential to lead to practice-changing discoveries.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| |
Collapse
|
18
|
Akashi Y, Yamamoto Y, Hashimoto M, Adomi S, Fujita K, Kiba K, Minami T, Yoshimura K, Hirayama A, Uemura H. Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancers (Basel) 2023; 15:5780. [PMID: 38136326 PMCID: PMC10742147 DOI: 10.3390/cancers15245780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) therapy has significantly improved the prognosis of some patients with advanced urothelial carcinoma (UC), but it does not provide high therapeutic efficacy in all patients. Therefore, identifying predictive biomarkers is crucial in determining which patients are candidates for ICI treatment. This study aimed to identify the predictors of ICI treatment response in patients with platinum-refractory advanced UC treated with pembrolizumab. METHODS Patients with platinum-refractory advanced UC who had received pembrolizumab at two hospitals in Japan were included. Univariate and multivariate analyses were performed to identify biomarkers for progression-free survival (PFS) and overall survival (OS). RESULTS Forty-one patients were evaluable for this analysis. Their median age was 75 years, and the vast majority of the patients were male (85.4%). The objective response rate was 29.3%, with a median overall survival (OS) of 17.8 months. On multivariate analysis, an Eastern Cooperative Oncology Group performance status (ECOG-PS) ≥ 2 (HR = 6.33, p = 0.03) and a baseline neutrophil-to-lymphocyte ratio (NLR) > 3 (HR = 2.79, p = 0.04) were significantly associated with poor OS. Antibiotic exposure did not have a significant impact on either PFS or OS. CONCLUSIONS ECOG-PS ≥ 2 and baseline NLR > 3 were independent risk factors for OS in patients with platinum-refractory advanced UC treated with pembrolizumab. Antibiotic exposure was not a predictor of ICI treatment response.
Collapse
Affiliation(s)
- Yasunori Akashi
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Yutaka Yamamoto
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Shogo Adomi
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Keisuke Kiba
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Takafumi Minami
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Akihide Hirayama
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| |
Collapse
|
19
|
Haight PJ, Kistenfeger Q, Riedinger CJ, Khadraoui W, Backes FJ, Bixel KL, Copeland LJ, Cohn DE, Cosgrove CM, O'Malley DM, Nagel CI, Spakowicz DJ, Chambers LM. The impact of antibiotic and proton pump inhibitor use at the time of adjuvant platinum-based chemotherapy on survival in patients with endometrial cancer. Gynecol Oncol 2023; 178:14-22. [PMID: 37741201 DOI: 10.1016/j.ygyno.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE We sought to assess the impact of antibiotic (ABX) and proton-pump inhibitor (PPI) use on progression-free (PFS) and overall survival (OS) in patients treated with adjuvant platinum-based chemotherapy (PC) for endometrial cancer (EC). METHODS A retrospective, single-institution cohort study of EC patients treated with ≥four cycles of adjuvant PC following surgical staging from 2014 to 2020. Demographics and clinicopathologic features, including ABX and PPI use, were compared using χ2 and Fisher's exact tests. Univariate and multivariable analyses were performed, and survival outcomes were compared using the log-rank test. RESULTS Of 325 patients, 95 (29%) received ABX, and 80 (24.6%) received PPI. ABX were associated with decreased 3-year PFS (49.9% vs. 66%; p = 0.0237) but not 3-year OS (68.9% vs. 79.9%; p = 0.0649). ABX targeting gram-positive bacteria were associated with decreased 3-year PFS (21.2% vs. 66.0% vs. 55.4%; p = 0.0038) and 3-year OS (36.5% vs. 79.9% vs. 75.6%; p = 0.0014) compared to no ABX and other ABX, respectively. PPI use was associated with decreased 3-year PFS (46.9% vs. 66.0%; p = 0.0001) and 3-year OS (60.7% vs. 81.9%; p = 0.0041) compared to no PPI. On multivariable regression analysis controlling for confounders including stage, histology, grade, radiation, and co-morbidities, PPI use was independently associated with worse PFS (HR 1.96, 95% CI 1.25-3.08; p = 0.0041) and OS (HR 2.06, 95% CI 1.01-4.18, p = 0.04). CONCLUSION In this retrospective cohort study, we demonstrate that PPI use is independently associated with worse PFS and OS in patients with EC treated with PC. ABX use was associated with worse PFS on univariate analysis only. There is an unmet need to understand how PPI, ABX, and, potentially, the microbiome impact the effectiveness of chemotherapy in EC patients.
Collapse
Affiliation(s)
- Paulina J Haight
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America.
| | - Quinn Kistenfeger
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Courtney J Riedinger
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Wafa Khadraoui
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Floor J Backes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Kristin L Bixel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Larry J Copeland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Casey M Cosgrove
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - David M O'Malley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Christa I Nagel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| | - Daniel J Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Laura M Chambers
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, James Hospital and Solove Research Institute, Columbus, OH, United States of America
| |
Collapse
|
20
|
Hoeijmakers LL, Reijers ILM, Blank CU. Biomarker-Driven Personalization of Neoadjuvant Immunotherapy in Melanoma. Cancer Discov 2023; 13:2319-2338. [PMID: 37668337 DOI: 10.1158/2159-8290.cd-23-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The introduction of immunotherapy has ushered in a new era of anticancer therapy for many cancer types including melanoma. Given the increasing development of novel compounds and combinations and the investigation in earlier disease stages, the need grows for biomarker-based treatment personalization. Stage III melanoma is one of the front-runners in the neoadjuvant immunotherapy field, facilitating quick biomarker identification by its immunogenic capacity, homogeneous patient population, and reliable efficacy readout. In this review, we discuss potential biomarkers for response prediction to neoadjuvant immunotherapy, and how the neoadjuvant melanoma platform could pave the way for biomarker identification in other tumor types. SIGNIFICANCE In accordance with the increasing rate of therapy development, the need for biomarker-driven personalized treatments grows. The current landscape of neoadjuvant treatment and biomarker development in stage III melanoma can function as a poster child for these personalized treatments in other tumors, assisting in the development of new biomarker-based neoadjuvant trials. This will contribute to personalized benefit-risk predictions to identify the most beneficial treatment for each patient.
Collapse
Affiliation(s)
- Lotte L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands
| |
Collapse
|
21
|
Joachim L, Göttert S, Sax A, Steiger K, Neuhaus K, Heinrich P, Fan K, Orberg ET, Kleigrewe K, Ruland J, Bassermann F, Herr W, Posch C, Heidegger S, Poeck H. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. EBioMedicine 2023; 97:104834. [PMID: 37865045 PMCID: PMC10597767 DOI: 10.1016/j.ebiom.2023.104834] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING Melanoma Research Alliance, Deutsche Forschungsgemeinschaft, German Cancer Aid, Wilhelm Sander Foundation, Novartis Foundation.
Collapse
Affiliation(s)
- Laura Joachim
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anna Sax
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Kaiji Fan
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Centre for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jürgen Ruland
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian Posch
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany; Faculty of Medicine, Sigmund Freud University Vienna, Vienna, Austria
| | - Simon Heidegger
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany; Centre for Immunomedicine in Transplantation and Oncology (CITO), Regensburg, Germany; Bavarian Cancer Research Centre (BZKF), Regensburg, Germany.
| |
Collapse
|
22
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
23
|
Hwang SW, Kim MK, Kweon MN. Gut microbiome on immune checkpoint inhibitor therapy and consequent immune-related colitis: a review. Intest Res 2023; 21:433-442. [PMID: 37640378 PMCID: PMC10626011 DOI: 10.5217/ir.2023.00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 08/31/2023] Open
Abstract
Immune checkpoint inhibitors have dramatically revolutionized the therapeutic landscape for patients with advanced malignancies. Recently, convincing evidence has shown meaningful influence of gut microbiome on human immune system. With the complex link between gut microbiome, host immunity and cancer, the variations in the gut microbiota may influence the efficacy of immune checkpoint inhibitors. Indeed, some bacterial species have been reported to be predictive for cancer outcome in patients treated with immune checkpoint inhibitors. Although immune checkpoint inhibitors are currently proven to be an effective anti-tumor treatment, they can induce a distinct form of toxicity, termed immune-related adverse events. Immune-related colitis is one of the common toxicities from immune checkpoint inhibitors, and it might preclude the cancer therapy in severe or refractory cases. The manipulation of gut microbiome by fecal microbiota transplantation or probiotics administration has been suggested as one of the methods to enhance anti-tumor effects and decrease the risk of immune-related colitis. Here we review the role of gut microbiome on immune checkpoint inhibitor therapy and consequent immune-related colitis to provide a new insight for better anti-cancer therapy.
Collapse
Affiliation(s)
- Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Kyu Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
25
|
Alkan Şen G, Şentürk Öztaş N, Değerli E, Can G, Turna H, Özgüroğlu M. Effect of antibiotic treatment on immune checkpoint inhibitors efficacy in patients with advanced non-small cell lung cancer. Lung Cancer 2023; 184:107347. [PMID: 37597304 DOI: 10.1016/j.lungcan.2023.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Gut microbiotaplays a crucial role in immune response. Recent data have shown that antibiotic (ATB) usage influences efficacy of immune check point inhibitors (ICIs) via altering microbiota of the gut. METHODS We retrospectively analyzed patients with advanced non-small cell lung cancer (NSCLC) treated with ICIs as monotherapy or combination with chemotherapy (ChT) at the one academic center. Those receiving ATB for the first 12 weeks of the initiation of ICIs were compared with those who did not. The primary objective of this study was to assess the impact of ATB use on overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) during ICIs therapy. RESULTS 90 patients were included in our analysis. Of these 90 patients, 27 (30%) received ATB in the first 12 weeks of the treatment. In patients who received ATB in the first 12 weeks of ICIs administration, PFS was significantly shorter (4.9 vs. 24.8 months, HR 2.52, 95% CI (1.52-4.18), p < 0.001). OS was also significantly shorter (5.4 vs. 37.8 months, HR 2.55, 95% CI (1.48-4.40), p = 0.001). We also examined the impact of ATB on ORR. Exposure to ATB for the first weeks consistently worsened the response rate; the ORR was 25.9% in the ATB group and 55.6% in the no ATB group (p = 0.01). CONCLUSION Our findings demonstrated that the use of antibiotics around ICIs initiation was associated with decreased OS, PFS, and ORR in patients with NSCLC. This suggests that microbiota diversity may be one of the factors predicting the efficacy of ICIs.
Collapse
Affiliation(s)
- Gülin Alkan Şen
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Nihan Şentürk Öztaş
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ezgi Değerli
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Günay Can
- Department of Public Health, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hande Turna
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mustafa Özgüroğlu
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
26
|
Zeriouh M, Raskov H, Kvich L, Gögenur I, Bennedsen ALB. Checkpoint inhibitor responses can be regulated by the gut microbiota - A systematic review. Neoplasia 2023; 43:100923. [PMID: 37603952 PMCID: PMC10465958 DOI: 10.1016/j.neo.2023.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Evidence suggests that the human gut microbiota modulates the treatment response of immune checkpoint inhibitors (ICI) in cancer. Thus, finding predictive biomarkers in the fecal gut microbiota of patients who are less likely to respond to ICI would be valuable. This systematic review aimed to investigate the association between fecal gut microbiota composition and ICI-treatment response in patients with cancer. METHODS EMBASE, Medline, and Cochrane Library databases were searched using the "Participants, Interventions, Comparisons, and Outcomes" (PICO) process to locate studies including participants with solid cancers treated with ICI intervention. The comparator was the gut microbiota, and the outcomes were oncological outcomes such as response rates and progression-free survival. Study data were synthesized qualitatively in a systematic narrative synthesis, and the risk of bias in the studies was assessed. RESULTS Two reviewers screened 2092 abstracts independently, and 140 studies were read as full-text reports and assessed for eligibility. Eighteen studies were included with 775 patients with different types of solid cancers who received anti-PD-1, anti-PD-L1, or anti-CTLA-4 therapy. Distinct patterns were observed in the patients' fecal samples. Some bacterial species were reported to be present in responders and non-responders, while others were present only in one group. The most reported species associated with better prognosis were Faecalibacterium prausnitzii, Streptococcus parasanguinis, Bacteroides caccae, and Prevotella copri. In contrast, the most reported species associated with poor prognosis were Blautia obeum and Bacteroides ovatus. CONCLUSION Distinct microbiota features were associated with good and poor prognoses in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Mariam Zeriouh
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark; Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, Køge 4600, Denmark
| | | |
Collapse
|
27
|
Fortman DD, Hurd D, Davar D. The Microbiome in Advanced Melanoma: Where Are We Now? Curr Oncol Rep 2023; 25:997-1016. [PMID: 37269504 PMCID: PMC11090495 DOI: 10.1007/s11912-023-01431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent data linking gut microbiota composition to ICI outcomes and gut microbiota-specific interventional clinical trials in melanoma. RECENT FINDINGS Preclinical and clinical studies have demonstrated the effects of the gut microbiome modulation upon ICI response in advanced melanoma, with growing evidence supporting the ability of the gut microbiome to restore or improve ICI response in advanced melanoma through dietary fiber, probiotics, and FMT. Immune checkpoint inhibitors (ICI) targeting the PD-1, CTLA-4, and LAG-3 negative regulatory checkpoints have transformed the management of melanoma. ICIs are FDA-approved in advanced metastatic disease, stage III resected melanoma, and high-risk stage II melanoma and are being investigated more recently in the management of high-risk resectable melanoma in the peri-operative setting. The gut microbiome has emerged as an important tumor-extrinsic modulator of both response and immune-related adverse event (irAE) development in ICI-treated cancer in general, and melanoma in particular.
Collapse
Affiliation(s)
- Dylan D Fortman
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Drew Hurd
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
28
|
Hes C, Jagoe RT. Gut microbiome and nutrition-related predictors of response to immunotherapy in cancer: making sense of the puzzle. BJC REPORTS 2023; 1:5. [PMID: 39516566 PMCID: PMC11523987 DOI: 10.1038/s44276-023-00008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 11/16/2024]
Abstract
The gut microbiome is emerging as an important predictor of response to immune checkpoint inhibitor (ICI) therapy for patients with cancer. However, several nutrition-related patient characteristics, which are themselves associated with changes in gut microbiome, are also prognostic markers for ICI treatment response and survival. Thus, increased abundance of Akkermansia muciniphila, Phascolarctobacterium, Bifidobacterium and Rothia in stool are consistently associated with better response to ICI treatment. A. muciniphila is also more abundant in stool in patients with higher muscle mass, and muscle mass is a strong positive prognostic marker in cancer, including after ICI treatment. This review explores the complex inter-relations between the gut microbiome, diet and patient nutritional status and the correlations with response to ICI treatment. Different multivariate approaches, including archetypal analysis, are discussed to help identify the combinations of features which may select patients most likely to respond to ICI treatment.
Collapse
Affiliation(s)
- Cecilia Hes
- Peter Brojde Lung Cancer Centre, Segal Cancer Center, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H2X 0A9, Canada
| | - R Thomas Jagoe
- Peter Brojde Lung Cancer Centre, Segal Cancer Center, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
29
|
Astore S, Baciarello G, Cerbone L, Calabrò F. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:517-546. [PMID: 37842234 PMCID: PMC10571064 DOI: 10.20517/cdr.2023.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023]
Abstract
The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can choose patients' treatments and cancer preventive strategies using an evolutionary approach thanks to the few evolutionary trajectories that characterize ccRCC.
Collapse
Affiliation(s)
- Serena Astore
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | | | - Linda Cerbone
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | - Fabio Calabrò
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
- Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy
| |
Collapse
|
30
|
Yan X, Bai L, Qi P, Lv J, Song X, Zhang L. Potential Effects of Regulating Intestinal Flora on Immunotherapy for Liver Cancer. Int J Mol Sci 2023; 24:11387. [PMID: 37511148 PMCID: PMC10380345 DOI: 10.3390/ijms241411387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal flora plays an important role in the occurrence and development of liver cancer, affecting the efficacy and side effects of conventional antitumor therapy. Recently, immunotherapy for liver cancer has been a palliative treatment for patients with advanced liver cancer lacking surgical indications. Representative drugs include immune checkpoint inhibitors, regulators, tumor vaccines, and cellular immunotherapies. The effects of immunotherapy on liver cancer vary because of the heterogeneity of the tumors. Intestinal flora can affect the efficacy and side effects of immunotherapy for liver cancer by regulating host immunity. Therefore, applying probiotics, prebiotics, antibiotics, and fecal transplantation to interfere with the intestinal flora is expected to become an important means of assisting immunotherapy for liver cancer. This article reviews publications that discuss the relationship between intestinal flora and immunotherapy for liver cancer and further clarifies the potential relationship between intestinal flora and immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Chen Q, Zhang Z, Li X, Feng S, Liu S. Analysis of prognostic factors affecting immune checkpoint inhibitor therapy in tumor patients exposed to antibiotics. Front Oncol 2023; 13:1204248. [PMID: 37483503 PMCID: PMC10358726 DOI: 10.3389/fonc.2023.1204248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Meta-analysis was performed to evaluate the prognostic factors in tumor patients treated with immune checkpoint inhibitors (ICIs) under antibiotic exposure. Method Literature on the effect of antibiotics on the prognosis of tumor patients receiving ICIs was retrieved from Pubmed, Cochrane Library, EMbase, EBSCO Evidence-Based Medicine Database, China Biomedical Literature Database (CBM), and China National Knowledge Network (CNKI), and relevant influencing factors were extracted. Meta-analysis of efficacy was performed using RevMan 5.4 software. Results A total of nine studies for 1,677 patients were included. The meta-analysis results showed that, in terms of progression-free survival, gender (male vs. female), Eastern Cooperative Oncology Group performance status (ECOG PS) (1-2 vs. 0), history of another cancer (yes vs. no), liver metastasis (yes vs. no), antibiotics (within the previous 2 months), PD-L1 (1%-49%), and PD-L1 (≥50%) factors are associated with progression-free survival in patients treated with ICIs under antibiotic exposure. In terms of overall survival, gender (male vs. female), ECOG score (1-2 vs. 0), history of another cancer (yes vs. no), brain metastasis (yes vs. no), liver metastasis (yes vs. no), radiation (within the previous 3 months), antibiotics (within the previous 2 months), PD-L1 (1%-49%), and PD-L1 (≥50%) factors are associated with overall survival in patients with antibiotic exposure receiving ICIs for tumor treatment. Conclusion Gender, ECOG score, history of another cancer, brain metastasis, liver metastasis, radiation (within the previous 3 months), antibiotics (within the previous 2 months), PD-L1 (1%-49%), and PD-L1 (≥50%) were associated with clinical benefit in patients with antibiotic exposure receiving ICIs for tumor treatment. Based on the above-mentioned factors, clinicians can screen cancer patients who receive ICIs under antibiotic exposure and rationally use antibiotics and ICIs in combination.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, Beijing Gaobo Boren Hospital, Beijing, China
| | - Zhen Zhang
- Department of Pharmacy, Beijing Gaobo Boren Hospital, Beijing, China
| | - Xiaoli Li
- Department of Pharmacy, Beijing Gaobo Boren Hospital, Beijing, China
| | - Shaomei Feng
- Department of Adult Lymphoma, Beijing Gaobo Boren Hospital, Beijing, China
| | - Shui Liu
- Department of Pharmacy, Emergency General Hospital, Beijing, China
| |
Collapse
|
32
|
Halsey TM, Thomas AS, Hayase T, Ma W, Abu-Sbeih H, Sun B, Parra ER, Jiang ZD, DuPont HL, Sanchez C, El-Himri R, Brown A, Flores I, McDaniel L, Turrubiates MO, Hensel M, Pham D, Watowich SS, Hayase E, Chang CC, Jenq RR, Wang Y. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci Transl Med 2023; 15:eabq4006. [PMID: 37315113 PMCID: PMC10759507 DOI: 10.1126/scitranslmed.abq4006] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy. All 12 patients had grade 3 or 4 ICI-related diarrhea or colitis that failed to respond to standard first-line (corticosteroids) and second-line immunosuppression (infliximab or vedolizumab). Ten patients (83%) achieved symptom improvement after FMT, and three patients (25%) required repeat FMT, two of whom had no subsequent response. At the end of the study, 92% achieved IMC clinical remission. 16S rRNA sequencing of patient stool samples revealed that compositional differences between FMT donors and patients with IMC before FMT were associated with a complete response after FMT. Comparison of pre- and post-FMT stool samples in patients with complete responses showed significant increases in alpha diversity and increases in the abundances of Collinsella and Bifidobacterium, which were depleted in FMT responders before FMT. Histologically evaluable complete response patients also had decreases in select immune cells , including CD8+ T cells, in the colon after FMT when compared with non-complete response patients (n = 4). This study validates FMT as an effective treatment strategy for IMC and gives insights into the microbial signatures that may play a critical role in FMT response.
Collapse
Affiliation(s)
- Taylor M. Halsey
- Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases, The University of Texas MD Anderson Cancer Center UTHealth Houston; Houston, Texas, USA
| | - Anusha S. Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Weijie Ma
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University; Wuhan, Hubei Province, People’s Republic of China
| | - Hamzah Abu-Sbeih
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Internal Medicine, University of Missouri; Kansas City, Missouri, USA
| | - Baohua Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
- Kelsey Research Foundation; Houston, Texas, USA
| | - Christopher Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Rawan El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Miriam Ortega Turrubiates
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | | | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| |
Collapse
|
33
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
34
|
Luu M, Schütz B, Lauth M, Visekruna A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:cancers15051588. [PMID: 36900377 PMCID: PMC10001145 DOI: 10.3390/cancers15051588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.
Collapse
Affiliation(s)
- Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Center for Tumor and Immune Biology (ZTI), Philipps-University Marburg, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
35
|
Attebury H, Daley D. The Gut Microbiome and Pancreatic Cancer Development and Treatment. Cancer J 2023; 29:49-56. [PMID: 36957973 PMCID: PMC10042586 DOI: 10.1097/ppo.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Changes in the gut microbiome have been increasingly shown to accompany oncogenesis across various tumors. Similarly, microbial dysbiosis was found to be associated with pancreatic cancer progression and survival outcomes, expanding the field of tumor microenvironment research in pancreatic cancer. Mechanistic studies in pancreatic cancer models implicate components of the gut and pancreatic cancer microbiome in regulating tumorigenesis by altering cancer cell signaling, modulating immune function, and influencing the efficacy of current therapies in pancreatic cancer. This review discusses the outcomes of microbial modulation across various preclinical and clinical studies and highlights ongoing trials targeting the microbiome for pancreatic cancer therapy.
Collapse
|
36
|
Sayin S, Rosener B, Li CG, Ho B, Ponomarova O, Ward DV, Walhout AJM, Mitchell A. Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy in co-cultured cancer cells. eLife 2023; 12:83140. [PMID: 36734518 PMCID: PMC9931390 DOI: 10.7554/elife.83140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Drug metabolism by the microbiome can influence anticancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here, we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria-colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brittany Rosener
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Carmen G Li
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Bao Ho
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Doyle V Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Albertha JM Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
37
|
Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat Rev 2023; 113:102499. [PMID: 36542945 DOI: 10.1016/j.ctrv.2022.102499] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marching into the second decade after the approval of ipilimumab, it is clear that immune checkpoint inhibitors (ICIs) have dramatically improved the prognosis of melanoma. Although the current edge is already high, with a 4-year OS% of 77.9% for adjuvant nivolumab and a 6.5-year OS% of 49% for nivolumab/ipilimumab combination in the metastatic setting, a high proportion of patients with advanced melanoma have no benefit from immunotherapy, or experience an early disease relapse/progression in the first few months of treatment, surviving much less. Reasonably, the primary and acquired resistance to ICIs has entered into the focus of clinical research with positive (e.g., nivolumab and relatlimab combination) and negative feedbacks (e.g., nivolumab with pegylated-IL2, pembrolizumab with T-VEC, nivolumab with epacadostat, and combinatorial triplets of BRAF/MEK inhibitors with immunotherapy). Many intrinsic (intracellular or intra-tumoral) but also extrinsic (systematic) events are considered to be involved in the development of this resistance to ICIs: i) melanoma cell immunogenicity (e.g., tumor mutational burden, antigen-processing machinery and immunogenic cell death, neoantigen affinity and heterogeneity, genomic instability, melanoma dedifferentiation and phenotypic plasticity), ii) immune cell trafficking, T-cell priming, and cell death evasion, iii) melanoma neovascularization, cellular TME components(e.g., Tregs, CAFs) and extracellular matrix modulation, iv) metabolic antagonism in the TME(highly glycolytic status, upregulated CD39/CD73/adenosine pathway, iDO-dependent tryptophan catabolism), v) T-cell exhaustion and negative immune checkpoints, and vi) gut microbiota. In the present overview, we discuss how these parameters compromise the efficacy of ICIs, with an emphasis on the lessons learned by the latest melanoma studies; and in parallel, we describe the main ongoing approaches to overcome the resistance to immunotherapy. Summarizing this information will improve the understanding of how these complicated dynamics contribute to immune escape and will help to develop more effective strategies on how anti-tumor immunity can surpass existing barriers of ICI-refractory melanoma.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Tilemachos Koutouratsas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
38
|
Vihinen H, Jokinen A, Laajala TD, Wahid N, Peltola L, Kettunen T, Rönkä A, Tiainen L, Skyttä T, Kohtamäki L, Tulokas S, Karhapää H, Hernberg M, Silvoniemi M, Mattila KE. Antibiotic Treatment is an Independent Poor Risk Factor in NSCLC But Not in Melanoma Patients Who had Received Anti-PD-1/L1 Monotherapy. Clin Lung Cancer 2023; 24:295-304. [PMID: 36774235 DOI: 10.1016/j.cllc.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Antibiotic treatment may reduce the efficacy of cancer immunotherapy by disrupting gut microbiome. We aimed to study the association of antibiotics and survival outcomes in advanced cutaneous melanoma and non-small-cell lung cancer (NSCLC) patients who had received anti-PD-1/L1 monotherapy. PATIENTS AND METHODS A total of 222 melanoma and 199 NSCLC patients had received anti-PD-1/L1 monotherapy in 5 Finnish hospitals between January 2014 and December 2020. Clinical characteristics, antibiotic and corticosteroid treatment, and survival outcomes were retrospectively collected from hospital and national medical records. RESULTS There were 32% of melanoma and 31% of NSCLC patients who had received antibiotic treatment (ABT) 3 months before to 1 month after the first anti-PD-1/L1 antibody infusion. In survival analyses, early antibiotic treatment was associated with inferior overall survival (OS) (ABT 19.2 [17.6-43.7] vs. no ABT 35.6 [29.3-NA] months, P = .033) but not with inferior progression-free survival (PFS) (ABT 5.8 [3.0-12.6] vs. no ABT 10.2 [7.7-15.3] months, P = .3) in melanoma patients and with inferior OS (ABT 8.6 [6.4-12.3] vs. no ABT 18.5 [15.1-21.6] months, P < .001) and PFS (ABT 2.8 [2.1-4.5] vs. no ABT 5.6 [4.4-8.0] months, P = .0081) in NSCLC patients. In multivariable analyses, ABT was not an independent risk-factor for inferior OS and PFS in melanoma but was associated with inferior OS (hazard ratio [HR] 2.12 [1.37-3.28]) and PFS (HR 1.65 [1.10-2.47]) in NSCLC after adjusted for other risk factors. CONCLUSIONS Early ABT was an independent poor risk factor in NSCLC patients who had received anti-PD-1/L1 monotherapy but not in melanoma patients. The weight of ABT as a poor risk factor might depend on other prognostic factors in different cancers.
Collapse
Affiliation(s)
- Hannes Vihinen
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland
| | - Artturi Jokinen
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Nesna Wahid
- Department of Oncology and Radiotherapy Vaasa Central Hospital, Vaasa Finland
| | - Lotta Peltola
- Department of Oncology and Radiotherapy Vaasa Central Hospital, Vaasa Finland
| | - Tiia Kettunen
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Rönkä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Leena Tiainen
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tanja Skyttä
- Department of Oncology, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Kohtamäki
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanni Tulokas
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Karhapää
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Micaela Hernberg
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Maria Silvoniemi
- Department of Respiratory Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Kalle E Mattila
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, POB 52, FIN-20521 Turku, Finland; InFLAMES Research Flagship Center, University of Turku.
| |
Collapse
|
39
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
40
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
41
|
Crespin A, Le Bescop C, de Gunzburg J, Vitry F, Zalcman G, Cervesi J, Bandinelli PA. A systematic review and meta-analysis evaluating the impact of antibiotic use on the clinical outcomes of cancer patients treated with immune checkpoint inhibitors. Front Oncol 2023; 13:1075593. [PMID: 36937417 PMCID: PMC10019357 DOI: 10.3389/fonc.2023.1075593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have considerably improved patient outcomes in various cancer types, but their efficacy remains poorly predictable among patients. The intestinal microbiome, whose balance and composition can be significantly altered by antibiotic use, has recently emerged as a factor that may modulate ICI efficacy. The objective of this systematic review and meta-analysis is to investigate the impact of antibiotics on the clinical outcomes of cancer patients treated with ICIs. Methods PubMed and major oncology conference proceedings were systematically searched to identify all studies reporting associations between antibiotic use and at least one of the following endpoints: Overall Survival (OS), Progression-Free Survival (PFS), Objective Response Rate (ORR) and Progressive Disease (PD) Rate. Pooled Hazard Ratios (HRs) for OS and PFS, and pooled Odds Ratios (ORs) for ORR and PD were calculated. Subgroup analyses on survival outcomes were also performed to investigate the potential differential effect of antibiotics according to cancer types and antibiotic exposure time windows. Results 107 articles reporting data for 123 independent cohorts were included, representing a total of 41,663 patients among whom 11,785 (28%) received antibiotics around ICI initiation. The pooled HRs for OS and PFS were respectively of 1.61 [95% Confidence Interval (CI) 1.48-1.76] and 1.45 [95% CI 1.32-1.60], confirming that antibiotic use was significantly associated with shorter survival. This negative association was observed consistently across all cancer types for OS and depending on the cancer type for PFS. The loss of survival was particularly strong when antibiotics were received shortly before or after ICI initiation. The pooled ORs for ORR and PD were respectively of 0.59 [95% CI 0.47-0.76] and 1.86 [95% CI 1.41-2.46], suggesting that antibiotic use was significantly associated with worse treatment-related outcomes. Conclusion As it is not ethically feasible to conduct interventional, randomized, controlled trials in which antibiotics would be administered to cancer patients treated with ICIs to demonstrate their deleterious impact versus control, prospective observational studies and interventional trials involving microbiome modifiers are crucially needed to uncover the role of microbiome and improve patient outcomes. Such studies will reduce the existing publication bias by allowing analyses on more homogeneous populations, especially in terms of treatments received, which is not possible at this stage given the current state of the field. In the meantime, antibiotic prescription should be cautiously considered in cancer patients receiving ICIs. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42019145675.
Collapse
Affiliation(s)
- Athéna Crespin
- Da Volterra, Paris, France
- *Correspondence: Athéna Crespin,
| | | | | | | | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Institut du Cancer AP-HP, Nord, Hôpital Bichat-Claude Bernard, AP-HP, Université de Paris, Paris, France
- U830 Institut National de la Santé et de la Recherche Médicale (INSERM) “Cancer, Heterogeneity, Instability and Plasticity” Curie Institute, Paris, France
| | | | | |
Collapse
|
42
|
Gonugunta AS, Von Itzstein MS, Hsiehchen D, Le T, Rashdan S, Yang H, Selby C, Alvarez C, Gerber DE. Antibiotic Prescriptions in Lung Cancer and Melanoma Populations: Differences With Potential Clinical Implications in the Immunotherapy Era. Clin Lung Cancer 2023; 24:11-17. [PMID: 36253271 DOI: 10.1016/j.cllc.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Antibiotic exposure is associated with worse clinical outcomes in patients receiving immune checkpoint inhibitors (ICI). We analyzed antibiotic prescription patterns in lung cancer and melanoma, two malignancies in which ICI are used broadly across stages. METHODS We performed a retrospective cohort study of adults in the U.S. Veterans Affairs (VA) medical system diagnosed with lung cancer or melanoma from 2003 to 2016. We defined antibiotic exposure as receipt of a prescription for a systemic antibacterial agent between 6 months before and 6 months after cancer diagnosis. Demographics, clinical variables, prescriptions, and diagnostic codes were abstracted from the VA Corporate Data Warehouse. Antibiotic exposure was compared using t tests, Chi-square, and multivariate analyses. RESULTS A total of 310,321 patients (280,068 lung cancer, 30,253 melanoma) were included in the analysis. Antibiotic exposure was more common among patients with lung cancer (42% vs. 24% for melanoma; P < .001). Among antibiotic-exposed patients, those with lung cancer were more likely to receive prescriptions for multiple antibiotics (47% vs. 30% for melanoma; P < .001). In multivariate analyses, antibiotic exposure was associated with lung cancer diagnosis (HR 1.50; 95% CI, 1.46-1.55), comorbidity score (HR 1.08; 95% CI, 1.08-1.09), non-white race (HR 1.11; 95% CI, 1.06-1.17), and female gender (HR 1.31; 95% CI, 1.24-1.37). CONCLUSION Among cancer patients, antibiotics are prescribed frequently. Antibiotic exposure is more common in certain cancer types and patient populations. Given the negative effect antibiotic exposure has on immunotherapy outcomes, these observations may have clinical and healthy policy implications.
Collapse
Affiliation(s)
| | - Mitchell S Von Itzstein
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - David Hsiehchen
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Tri Le
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Sawsan Rashdan
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center
| | - Hui Yang
- Texas Tech University School of Pharmacy
| | | | - Carlos Alvarez
- Texas Tech University School of Pharmacy; Department of Population and Data Sciences, UT Southwestern Medical Center
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center; Department of Population and Data Sciences, UT Southwestern Medical Center.
| |
Collapse
|
43
|
Liu W, Luo Z, Liu Y, Sun B. Current landscape and tailored management of immune-related adverse events. Front Pharmacol 2023; 14:1078338. [PMID: 36950013 PMCID: PMC10025325 DOI: 10.3389/fphar.2023.1078338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Unprecedented advances have been made in immune checkpoint inhibitors (ICIs) in the treatment of cancer. However, the overall benefits from ICIs are impaired by the increasing incidence of immune-related adverse events (irAEs). Although several factors and mechanisms have been proposed in the development of irAEs, there is still incomprehensive understanding of irAEs. Therefore, it is urgent to identify certain risk factors and biomarkers that predict the development of irAEs, as well as to understand the underlying mechanisms of these adverse events. Herein, we comprehensively summarize the state-of-the-art knowledge about clinical features and the related risk factors of irAEs. Particularly, we also discuss relevant mechanisms of irAEs and address the mechanism-based strategies, aiming to develop a tailored management approach for irAEs.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yiping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
44
|
The Association between Baseline Proton Pump Inhibitors, Immune Checkpoint Inhibitors, and Chemotherapy: A Systematic Review with Network Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010284. [PMID: 36612290 PMCID: PMC9818995 DOI: 10.3390/cancers15010284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
(1) Although emerging evidence suggests that proton pump inhibitor (PPI)-induced dysbiosis negatively alters treatment response to immune checkpoint inhibitors (ICIs) in cancer patients, no study systematically investigates the association between PPIs, ICIs, and chemotherapy; (2) Cochrane Library, Embase, Medline, and PubMed were searched from inception to 20 May 2022, to identify relevant studies involving patients receiving ICIs or chemotherapy and reporting survival outcome between PPI users and non-users. Survival outcomes included overall survival (OS) and progression-free survival (PFS). Network meta-analyses were performed using random-effects models. p-scores, with a value between 0 and 1, were calculated to quantify the treatment ranking, with a higher score suggesting a higher probability of greater effectiveness. We also conducted pairwise meta-analyses of observational studies to complement our network meta-analysis; (3) We identified 62 studies involving 26,484 patients (PPI = 8834; non-PPI = 17,650), including non-small cell lung cancer (NSCLC), urothelial carcinoma (UC), melanoma, renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), and squamous cell carcinoma (SCC) of the neck and head. Eight post-hoc analyses from 18 randomized-controlled trials were included in our network, which demonstrated that, in advanced NSCLC and UC, patients under ICI treatment with concomitant PPI (p-score: 0.2016) are associated with both poorer OS (HR, 1.49; 95% CI, 1.37 to 1.67) and poorer PFS (HR, 1.41; 95% CI, 1.25 to 1.61) than those without PPIs (p-score: 1.000). Patients under ICI treatment with concomitant PPI also had poorer OS (HR, 1.18; 95% CI, 1.07 to 1.31) and poorer PFS (HR, 1.30; 95% CI, 1.14 to 1.48) in comparison with those receiving chemotherapy (p-score: 0.6664), implying that PPIs may compromise ICI's effectiveness, making it less effective than chemotherapy. Our pairwise meta-analyses also supported this association. Conversely, PPI has little effect on patients with advanced melanoma, RCC, HCC, and SCC of the neck and head who were treated with ICIs; (4) "PPI-induced dysbiosis" serves as a significant modifier of treatment response in both advanced NSCLC and UC that are treated with ICIs, compromising the effectiveness of ICIs to be less than that of chemotherapy. Thus, clinicians should avoid unnecessary PPI prescription in these patients. "PPI-induced dysbiosis", on the other hand, does not alter the treatment response to ICIs in advanced melanoma, RCC, HCC, and SCC of the head and neck.
Collapse
|
45
|
Borgers JSW, Burgers FH, Terveer EM, van Leerdam ME, Korse CM, Kessels R, Flohil CC, Blank CU, Schumacher TN, van Dijk M, Henderickx JGE, Keller JJ, Verspaget HW, Kuijper EJ, Haanen JBAG. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/IIa trial. BMC Cancer 2022; 22:1366. [PMID: 36585700 PMCID: PMC9801532 DOI: 10.1186/s12885-022-10457-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The gut microbiome plays an important role in immune modulation. Specifically, presence or absence of certain gut bacterial taxa has been associated with better antitumor immune responses. Furthermore, in trials using fecal microbiota transplantation (FMT) to treat melanoma patients unresponsive to immune checkpoint inhibitors (ICI), complete responses (CR), partial responses (PR), and durable stable disease (SD) have been observed. However, the underlying mechanism determining which patients will or will not respond and what the optimal FMT composition is, has not been fully elucidated, and a discrepancy in microbial taxa associated with clinical response has been observed between studies. Furthermore, it is unknown whether a change in the microbiome itself, irrespective of its origin, or FMT from ICI responding donors, is required for reversion of ICI-unresponsiveness. To address this, we will transfer microbiota of either ICI responder or nonresponder metastatic melanoma patients via FMT. METHODS In this randomized, double-blinded phase Ib/IIa trial, 24 anti-PD1-refractory patients with advanced stage cutaneous melanoma will receive an FMT from either an ICI responding or nonresponding donor, while continuing anti-PD-1 treatment. Donors will be selected from patients with metastatic melanoma treated with anti-PD-1 therapy. Two patients with a good response (≥ 30% decrease according to RECIST 1.1 within the past 24 months) and two patients with progression (≥ 20% increase according to RECIST 1.1 within the past 3 months) will be selected as ICI responding or nonresponding donors, respectively. The primary endpoint is clinical benefit (SD, PR or CR) at 12 weeks, confirmed on a CT scan at 16 weeks. The secondary endpoint is safety, defined as the occurrence of grade ≥ 3 toxicity. Exploratory endpoints are progression-free survival and changes in the gut microbiome, metabolome, and immune cells. DISCUSSION Transplanting fecal microbiota to restore the patients' perturbed microbiome has proven successful in several indications. However, less is known about the potential role of FMT to improve antitumor immune response. In this trial, we aim to investigate whether administration of FMT can reverse resistance to anti-PD-1 treatment in patients with advanced stage melanoma, and whether the ICI-responsiveness of the feces donor is associated with its effectiveness. TRIAL REGISTRATION ClinicalTrials.gov: NCT05251389 (registered 22-Feb-2022). Protocol V4.0 (08-02-2022).
Collapse
Affiliation(s)
- J. S. W. Borgers
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - F. H. Burgers
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - E. M. Terveer
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M. E. van Leerdam
- grid.430814.a0000 0001 0674 1393Department of Gastrointestinal Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C. M. Korse
- grid.430814.a0000 0001 0674 1393Department of Laboratory Medicine, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. Kessels
- grid.430814.a0000 0001 0674 1393Department of Biometrics, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C. C. Flohil
- grid.430814.a0000 0001 0674 1393Department of Pathology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C. U. Blank
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - T. N. Schumacher
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - M. van Dijk
- grid.430814.a0000 0001 0674 1393Clinical Trial Service Unit, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J. G. E. Henderickx
- grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Keller
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands ,grid.414842.f0000 0004 0395 6796Department of Gastroenterology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - H. W. Verspaget
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Biobanking, Leiden University Medical Center, Leiden, The Netherlands
| | - E. J. Kuijper
- grid.10419.3d0000000089452978Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.10419.3d0000000089452978Center for Microbiome Analyses and Therapeutics at Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. B. A. G. Haanen
- grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
46
|
Impact of antibiotic use before definitive concurrent chemoradiation in patients with locally advanced non-small cell lung cancer. Strahlenther Onkol 2022:10.1007/s00066-022-02027-9. [DOI: 10.1007/s00066-022-02027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022]
|
47
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
48
|
Luo Z, Hao S, Li Y, Cheng L, Zhou X, Gunes EG, Liu S, Chen J. The negative effect of antibiotics on RCC patients with immunotherapy: A systematic review and meta-analysis. Front Immunol 2022; 13:1065004. [PMID: 36505435 PMCID: PMC9727164 DOI: 10.3389/fimmu.2022.1065004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Microbiome dysbiosis is considered a predictive biomarker of clinical response in renal cell carcinoma (RCC), which can be regulated by antibiotics (ATB). Multiple studies have shown that concomitant ATB administration has inhibitory effects on immunotherapy in RCC. This review aimed to assess the impact of ATB on patient survival and tumor response in RCC with immunotherapy. Methods Literature evaluating the effect of ATB on immunotherapy in RCC from Cochrane Library®, PubMed®, Embase®, Scopus®, and Web of Science® were systematically searched. Hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS), odds ratio (OR) for objective response rate (ORR) and primary progressive disease (PD) were pooled as effect sizes for clinical outcomes. Subgroup analysis was conducted to reveal the determinants of the effect of ATB on immunotherapy, including time windows of ATB exposure to immunotherapy initiation, ICIs treatment and study location. The leave-one-out approach was adopted to analyze the heterogeneity formulated. Cumulative meta-analysis adding by time was used to observe dynamic changes of the results. Results Ten studies were included in the systematic review and six studies (with n=1,104 patients) were included in the meta-analysis, four studies were excluded for overlapping patients with subsequent larger studies and lack of unique patient-level data. ATB administration was significantly correlated with shorter PFS (HR=2.10, 95%CI [1.54; 2.85], I2 = 2% after omitting study Derosa et al, 2021 detected by leave-one-out approach), shorter OS (HR=1.69, 95%CI [1.34; 2.12], I2 = 25%) and worse ORR (OR=0.58, 95%CI [0.41; 0.84]), but no difference was observed in risk of PD (OR=1.18, 95%CI [0.97; 1.44]). No significant differences existed among the subgroups for determining the determinants of ATB inhibition. Conclusions Concomitant ATB with immunotherapy was associated with worse PFS, OS and ORR in RCC. No publication bias was observed in this study. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=349577, identifier CRD42022349577.
Collapse
Affiliation(s)
- Zhiqiang Luo
- State Key Laboratory of Oral Diseases, National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Diseases, National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Emine Gulsen Gunes
- Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, United States
| | - Shiyu Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou, China,*Correspondence: Shiyu Liu, ; Jing Chen,
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Shiyu Liu, ; Jing Chen,
| |
Collapse
|
49
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
50
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|