1
|
Xie Z, Shao J, Shen Z, Ye Z, Okada Y, Okuzaki D, Okada N, Tachibana M. HDAC1-3 inhibition triggers NEDD4-mediated CCR2 downregulation and attenuates immunosuppression in myeloid-derived suppressor cells. Cancer Immunol Immunother 2025; 74:81. [PMID: 39891718 PMCID: PMC11787094 DOI: 10.1007/s00262-024-03931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/21/2024] [Indexed: 02/03/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in cancer progression and resistance, thus representing promising targets for immunotherapy. Despite the established role of histone deacetylases (HDACs) in epigenetic regulation of cell fate and function, their specific impact on MDSCs remains elusive. We sought to investigate the effects and underlying mechanisms of HDAC on MDSCs using various HDAC inhibitors. Our results indicate that HDAC1-3 inhibitors reduce CCR2 expression, a chemokine receptor that mediates the migration of monocytic (M-)MDSCs to tumors and attenuated the immunosuppressive activity of MDSCs. In an orthotropic hepatocellular carcinoma (HCC) murine model, HDAC1-3 inhibitors reduced the infiltration of M-MDSCs, increased the number of natural killer cells in tumors, and suppressed tumor growth. Our results also suggest that HDAC1-3 inhibitors potentiate the antitumor effects of anti-programmed cell death protein 1 antibodies. ATAC-seq and RNA-seq analyses revealed 115 genes epigenetically upregulated by HDAC1-3 inhibitors, primarily linked to transcriptional regulation and ubiquitination. We further elucidated that HDAC1-3 inhibitors facilitate CCR2 protein degradation through ubiquitination-mediated by NEDD4 E3 ligase. Our findings reveal a novel mechanism of action of HDAC1-3 inhibitors in MDSCs and suggest a potential synergistic immunotherapy strategy for clinical benefit in HCC.
Collapse
Affiliation(s)
- Zhiqi Xie
- Wuyi First People's Hospital, Affiliated Hospital, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Jinjin Shao
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhichao Ye
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Laboratory for Context-Dependent Cell Immunology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
2
|
Liu J, Dai K, Saliu MA, Salisu MD, Gan J, Afolabi LO, Yan D, Zhang G, Liu M, Wan X. Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma. Front Immunol 2025; 15:1519777. [PMID: 39877353 PMCID: PMC11772361 DOI: 10.3389/fimmu.2024.1519777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage. To enhance the effectiveness of NKG2D CAR-T therapy, we investigated the potential of combining NKG2D CAR-T with approved drugs that cross the blood-brain barrier and augment NKG2D ligands expression in glioma cells. We found that sodium valproate (VPA), an antiepileptic drug, significantly increased surface NKG2D ligands expression on glioblastoma cells at a sublethal concentration. VPA treatment enhanced the susceptibility of glioblastoma cells to NKG2D CAR-T mediated cytotoxicity in both 2D monolayer and 3D tumor spheroid models in vitro. Moreover, VPA-treated glioblastoma cells stimulated CAR-T cells to produce higher levels of inflammatory cytokines (IL-2, IFN-γ, and IL-6). Mechanistically, VPA upregulated NKG2D ligands expression via the PI3K/Akt signaling pathway. Additionally, VPA treatment augmented the antitumor activity of NKG2D CAR-T cells in a glioblastoma xenograft model in vivo. These preclinical results suggest that combining VPA with NKG2D CAR-T therapy represents a promising strategy for improving glioblastoma treatment, warranting further clinical investigation.
Collapse
Affiliation(s)
- Junchen Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Dai
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Inspection Department, Ji’an Central People’s Hospital, Ji’an, China
| | - Muhammad Auwal Saliu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mansur Dabai Salisu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangyu Gan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lukman Olalekan Afolabi
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, United States
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Maoxuan Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Liu K, Li Y, Shen M, Xu W, Wu S, Yang X, Zhang B, Lin N. Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment. Biomolecules 2025; 15:71. [PMID: 39858465 PMCID: PMC11764280 DOI: 10.3390/biom15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells. This remolds the area surrounding tumor cells, ultimately fostering an immunosuppressive microenvironment. Therefore, correcting the TME by targeting the epigenetic modifications holds substantial promise for cancer treatment. This review synthesizes recent research that elucidates the impact of specific epigenetic regulations-ranging from DNA methylation to histone modifications and chromatin remodeling-on stromal and immune cells within the TME. Notably, we highlight their functional roles in either promoting or restricting tumor progression. We also discuss the potential applications of epigenetic agents for cancer treatment, envisaging their ability to normalize the ecosystem. This review aims to assist researchers in understanding the dynamic interplay between epigenetics and the TME, paving the way for better epigenetic therapy.
Collapse
Affiliation(s)
- Kang Liu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yue Li
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Minmin Shen
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Drug Clinical Trial Institution, Huzhou Central Hospital, Huzhou 313000, China
| | - Wei Xu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Shanshan Wu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xinxin Yang
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Bo Zhang
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Nengming Lin
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China; (K.L.); (Y.L.); (M.S.); (W.X.); (S.W.); (X.Y.)
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| |
Collapse
|
4
|
Lei Y, Liu Y, Xie W, Wei Y, Zhuang X, Zhang H, Cao H, Wang X. Cardiovascular developmental hazards of valproic acid in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117165. [PMID: 39405976 DOI: 10.1016/j.ecoenv.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024]
Abstract
Valproic acid (VPA) is predominantly prescribed for epilepsy, convulsions, and other psychiatric disorders. As an epigenetic regulator, it is also used to treat various forms of cancer. The clinical demand for the drug may pose an environmental hazard. Evidence indicates that VPA's significant therapeutic value comes at the cost of possible side toxic effects, as symptoms of birth defects have been confirmed in animal experiments using VPA. However, the effects of VPA during the development of the circulatory system remain unclear. In this study, zebrafish embryos were exposed to a series of concentrations of VPA between three hours post fertilization (hpf) and five days post fertilization (dpf). The results demonstrated time- and dose-dependent developmental delays in the zebrafish, including cardiovascular malformation and decreased movement and reaction time. Consistent with the in vivo results, exposure to VPA increased the levels of myocardial reactive oxygen species (ROS) and cell apoptosis through cardiac mitochondrial turnover disorders. The expression levels of genes related to cardiovascular development and antioxidant response were downregulated, while genes related to apoptosis pathways were upregulated. Overall, our toxicological studies of VPA exposure illustrate the damage to cardiovascular development, raising concerns about the hazard of VPA exposure in early pregnancy. Our study provides novel insights into the potential environmental risks of VPA.
Collapse
Affiliation(s)
- Yuqing Lei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yingying Liu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Wenpeng Xie
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Yalan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xudong Zhuang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Haitao Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hua Cao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
5
|
Wang K, Wang Y, Yin K. Role played by MDSC in colitis-associated colorectal cancer and potential therapeutic strategies. J Cancer Res Clin Oncol 2024; 150:243. [PMID: 38717677 PMCID: PMC11078801 DOI: 10.1007/s00432-024-05755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.
Collapse
Affiliation(s)
- Kang Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China
| | - Yun Wang
- Department of Dermatology, The First People's Hospital of Changzhou, Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China.
| |
Collapse
|
6
|
Huang Y, Qin Y, He Y, Qiu D, Zheng Y, Wei J, Zhang L, Yang DH, Li Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist Updat 2024; 74:101082. [PMID: 38569225 DOI: 10.1016/j.drup.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
Collapse
Affiliation(s)
- Yuxian Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| | - Yinjie Qin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yingzhi He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dezhi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yeqin Zheng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jiayue Wei
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
7
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
8
|
Shao J, Ye Z, Shen Z, Liu N, Zhang L, Tachibana M, Xie Z. Chidamide improves gefitinib treatment outcomes in NSCLC by attenuating recruitment and immunosuppressive function of myeloid-derived suppressor cells. Biomed Pharmacother 2024; 173:116306. [PMID: 38401520 DOI: 10.1016/j.biopha.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Clinical resistance to EGFR tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) remains a significant challenge. Recent studies have indicated that the number of myeloid-derived suppressor cells (MDSCs) increases following gefitinib treatment, correlating with a poor patient response in NSCLC. Our study revealed that gefitinib treatment stimulates the production of CCL2, which subsequently enhances monocyte (M)-MDSC migration to tumor sites. Chidamide, a selective inhibitor of the histone deacetylase subtype, counteracted the gefitinib-induced increase in CCL2 levels in tumor cells. Additionally, chidamide down-regulated the expression of CCR2 in M-MDSCs, inhibiting their migration. Furthermore, chidamide attenuated the immunosuppressive function of M-MDSCs both alone and in combination with gefitinib. Chidamide also alleviated tumor immunosuppression by reducing the number of M-MDSCs in LLC-bearing mice, thereby enhancing the antitumor efficacy of gefitinib. In conclusion, our findings suggest that chidamide can improve gefitinib treatment outcomes, indicating that MDSCs are promising targets in NSCLC.
Collapse
Affiliation(s)
- Jinjin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310053, China; Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhichao Ye
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Nienwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lijiang Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
| | - Masashi Tachibana
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Zhiqi Xie
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
9
|
Tian X, Wang T, Shen H, Wang S. Tumor microenvironment, histone modifications, and myeloid-derived suppressor cells. Cytokine Growth Factor Rev 2023; 74:108-121. [PMID: 37598011 DOI: 10.1016/j.cytogfr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are important components of the tumor microenvironment (TME), which drive the tumor immune escape by inducing immunosuppression. The expansion and function of MDSCs are tightly associated with signaling pathways induced by molecules from tumor cells, stromal cells, and activated immune cells in the TME. Although these pathways have been well-characterized, the understanding of the epigenetic regulators involved is incomplete. Since histone modifications are the most studied epigenetic changes in MDSCs, we summarize current knowledge on the role of histone modifications in MDSCs within this review. We first discuss the influence of the TME on histone modifications in MDSCs, with an emphasis on histone modifications and modifiers that direct MDSC differentiation and function. Furthermore, we highlight current epigenetic interventions that can reverse MDSC-induced immunosuppression by modulating histone modifications and discuss future research directions to fully appreciate the role of histone modifications in MDSCs.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
10
|
Xie Z, Zhou H, Obana M, Fujio Y, Okada N, Tachibana M. Myeloid-derived suppressor cells exacerbate poly(I:C)-induced lung inflammation in mice with renal injury and older mice. Front Immunol 2023; 14:1243851. [PMID: 37818369 PMCID: PMC10560716 DOI: 10.3389/fimmu.2023.1243851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Viral pneumonia is a global health burden with a high mortality rate, especially in the elderly and in patients with underlying diseases. Recent studies have found that myeloid-derived suppressor cells (MDSCs) are abundant in these patient groups; however, their roles in the progression of viral pneumonia remain unclear. In this study, we observed a substantial increase in MDSCs in a mouse model of renal ischemia/reperfusion (I/R) injury and in older mice. When intranasal polyinosinic-polycytidylic acid (poly(I:C)) administration was used to mimic viral pneumonia, mice with renal I/R injury exhibited more severe lung inflammation than sham mice challenged with poly(I:C). In addition, MDSC depletion attenuated lung inflammation in mice with I/R injury. Similar results were obtained in older mice compared with those in young mice. Furthermore, adoptive transfer of in vitro-differentiated MDSCs exacerbated poly(I:C)-induced lung inflammation. Taken together, these experimental results suggest that the increased proportion of MDSCs in mice with renal I/R injury and in older mice exacerbates poly(I:C)-induced lung inflammation. These findings have important implications for the treatment and prevention of severe lung inflammation caused by viral pneumonia.
Collapse
Affiliation(s)
- Zhiqi Xie
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Haoyang Zhou
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
12
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
13
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
15
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
16
|
Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X, Wang C. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Front Immunol 2022; 12:754196. [PMID: 35003065 PMCID: PMC8727744 DOI: 10.3389/fimmu.2021.754196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are activated under pathological conditions, such as cancer, or mature myeloid cells that are converted immune-suppressive cells via tumor-derived exosomes, and potently support the tumor processes at different levels. Currently, multiple studies have demonstrated that MDSCs induce immune checkpoint blockade (ICB) therapy resistance through their contribution to the immunosuppressive network in the tumor microenvironment. In addition, non-immunosuppressive mechanisms of MDSCs such as promotion of angiogenesis and induction of cancer stem cells also exert a powerful role in tumor progression. Thus, MDSCs are potential therapeutic targets to enhance the antitumor efficacy of ICB therapy in cases of multiple cancers. This review focuses on the tumor-promoting mechanism of MDSCs and provides an overview of current strategies that target MDSCs with the objective of enhancing the antitumor efficacy of ICB therapy.
Collapse
Affiliation(s)
- Xueyan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Jiahui Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Guo
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yantong Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| |
Collapse
|
17
|
Adeshakin AO, Adeshakin FO, Yan D, Wan X. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy. Front Immunol 2022; 13:781660. [PMID: 35140716 PMCID: PMC8818783 DOI: 10.3389/fimmu.2022.781660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has emerged as a promising approach to combat immunosuppressive tumor microenvironment (TME) for improved cancer treatment. FDA approval for the clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients respond to this treatment due to several factors including the accumulation of immunosuppressive cells in the TME. Several immunosuppressive cells within the TME such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the activation and function of T cells to promote tumor progression. The roles of epigenetic modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but little is known about their impact on immune cells. Recent studies showed inhibiting HDAC expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted current challenges and future perspectives of HDAC inhibitors in regulating MDSCs function for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| |
Collapse
|
18
|
Kishi M, Asgarova A, Desterke C, Chaker D, Artus J, Turhan AG, Bennaceur-Griscelli A, Griscelli F. Evidence of Antitumor and Antimetastatic Potential of Induced Pluripotent Stem Cell-Based Vaccines in Cancer Immunotherapy. Front Med (Lausanne) 2021; 8:729018. [PMID: 34957134 PMCID: PMC8702815 DOI: 10.3389/fmed.2021.729018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is maintained by the activity of a rare population of self-renewing "cancer stem cells" (CSCs), which are resistant to conventional therapies. CSCs over-express several proteins shared with induced pluripotent stem cells (iPSCs). We show here that allogenic or autologous murine iPSCs, combined with a histone deacetylase inhibitor (HDACi), are able to elicit major anti-tumor responses in a highly aggressive triple-negative breast cancer, as a relevant cancer stemness model. This immunotherapy strategy was effective in preventing tumor establishment and efficiently targeted CSCs by inducing extensive modifications of the tumor microenvironment. The anti-tumoral effect was correlated with the generation of CD4+, CD8+ T cells, and CD44+ CD62L- CCR7low CD127low T-effector memory cells, and the reduction of CD4+ CD25+FoxP3+ Tregs, Arg1+ CD11b+ Gr1+, and Arg1+ and CD11b+ Ly6+ myeloid-derived suppressor cell populations within the tumor. The anti-tumoral effect was associated with a reduction in metastatic dissemination and an improvement in the survival rate. These results demonstrate for the first time the clinical relevance of using an off-the-shelf allogeneic iPSC-based vaccine combined with an HDACi as a novel pan-cancer anti-cancer immunotherapy strategy against aggressive tumors harboring stemness features with high metastatic potential.
Collapse
Affiliation(s)
- Masae Kishi
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France
| | - Afag Asgarova
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France
| | - Christophe Desterke
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
| | - Diana Chaker
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France
| | - Jérôme Artus
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
| | - Ali G Turhan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France.,APHP Paris-Saclay Service d'Hématologie, Hôpital Universitaire Paris Sud (AP-HP), Kremlin Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.,Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France.,APHP Paris-Saclay Service d'Hématologie, Hôpital Universitaire Paris Sud (AP-HP), Kremlin Bicêtre, France
| | - Frank Griscelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UA9-Human Pluripotent Stem Cell Core Facility, CITHERA Infrastructure-INGESTEM, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.,Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
19
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Tang H, Li H, Sun Z. Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0806. [PMID: 34403220 PMCID: PMC8610166 DOI: 10.20892/j.issn.2095-3941.2020.0806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to enhance the antitumor efficacy of ICB.
Collapse
Affiliation(s)
- Hongchao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
21
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Zhao Y, Cao Y, Chen Y, Wu L, Hang H, Jiang C, Zhou X. B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy. Immunology 2021; 164:507-523. [PMID: 34115389 DOI: 10.1111/imm.13384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023] Open
Abstract
Loss of the B2M gene is associated with tumour immune escape and resistance to immunotherapy. However, genetic alterations of the B2M gene are rare. We performed an integrative analysis of the mutational and transcriptional profiles of large cohorts of non-small-cell lung cancer (NSCLC) patients and found that epigenetic downregulation of B2M is common. B2M-low tumours exhibit a suppressive immune microenvironment characterized by reduced infiltration of immune cells of various lineages; in B2M-high tumours, more T and natural killer cells are present, but their activities are constrained by immune checkpoint molecules, indicating the diverse mechanisms of immune evasion. High levels of B2M mRNA, but not PD-L1, are correlated with an enhanced response to PD-1-based immunotherapy, suggesting its value for immunotherapy response prediction in solid tumours. Notably, a high tumour mutation burden (TMB) is associated with low B2M expression, which may explain the poor predictive value of the TMB in some situations. In syngeneic mouse models, genetic ablation of B2M in tumour cells causes resistance to PD-1-based immunotherapy, and B2M knockdown also diminishes the therapeutic efficacy. Moreover, forced expression of B2M in tumour models improves the response to immunotherapy, suggesting that B2M levels have significant impacts on treatment outcomes. Finally, we provide insight into the roles of transcription factors and KRAS mutations in B2M expression and the anticancer immune response. In conclusion, genetic and epigenetic regulation of B2M fundamentally shapes the NSCLC immune microenvironment and may determine the response to checkpoint blockade-based immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yuejiao Cao
- School of Medicine, Nantong University, Nantong, China
| | - Yiqi Chen
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Lei Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Hua Hang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Chenxia Jiang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
23
|
Cui Y, Cai J, Wang W, Wang S. Regulatory Effects of Histone Deacetylase Inhibitors on Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:690207. [PMID: 34149732 PMCID: PMC8208029 DOI: 10.3389/fimmu.2021.690207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are antitumor drugs that are being developed for use in clinical settings. HDACIs enhance histone or nonhistone acetylation and promote gene transcription via epigenetic regulation. Importantly, these drugs have cytotoxic or cytostatic properties and can directly inhibit tumor cells. However, how HDACIs regulate immunocytes in the tumor microenvironment, such as myeloid-derived suppressor cells (MDSCs), has yet to be elucidated. In this review, we summarize the effects of different HDACIs on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies.
Collapse
Affiliation(s)
- Yudan Cui
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingshan Cai
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Jin L, Duan W, Cai Z, Lim D, Feng Z. Valproic acid triggers radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment in a rat model of breast cancer. JOURNAL OF RADIATION RESEARCH 2021:rrab037. [PMID: 34050356 DOI: 10.1093/jrr/rrab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Indexed: 06/12/2023]
Abstract
An abscopal effect occurs when localized radiotherapy causes the regression of tumors distant from the irradiated site. However, such a clinically detectable abscopal effect from radiotherapy alone is rare. This study investigated whether valproic acid ([VPA], a histone deacetylase inhibitor [HDACi]) treatment can stimulate radiation-induced abscopal effect. We used 7,12-dimethylbenz[a]anthracene, a typical environmental carcinogen, to establish a rat model with multiple breast tumors. Only one tumor received 8 Gy fractionated doses of X-rays (2 Gy daily fractions over four days) and 200 mg/kg VPA was administered intraperitoneally. We monitored the growth of both irradiated and unirradiated tumors after treatments. The unirradiated tumor was collected for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) (CD8, Granzyme B, Cleaved Caspase-3, BrdU, Ki67, F4/80 and CD68), double immunofluorescence (F4/80 and CD86), Western blot (Cleaved Caspase-3) and qRT-PCR (CD86, CD163, IL-1β, IL-6, IL-12, IL-23, IL-10, TGF-β) analysis. We found ionizing radiation (IR) + VPA treatment inhibited both irradiated and unirradiated tumor growth as compared to IR alone. Such observe abscopal effect was mediated by the recruitment of activated CD8+ T cells into the unirradiated tumor sites, which released Granzyme B to cause tumor cell apoptosis. Furthermore, IR + VPA treatment led to macrophages infiltration into the unirradiated tumor sites and polarization to M1 phenotype, resulted in increased levels of pro-inflammatory cytokines such as IL-1β and IL-12, and decreased levels of anti-inflammatory cytokines such as IL-10 and TGF-β. Our data supports the proposition that VPA may be a potential therapeutic candidate to trigger radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment.
Collapse
Affiliation(s)
- Liya Jin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenhua Duan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown 2560, Australia
- College of Medicine and Public Health, Flinders University, Bedford Place 5042, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
25
|
Mandula JK, Rodriguez PC. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol 2021; 363:104312. [PMID: 33652258 PMCID: PMC8026602 DOI: 10.1016/j.cellimm.2021.104312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Xiong J, Wang H, Wang Q. Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Adv Biol (Weinh) 2021; 5:e1900311. [PMID: 33729699 DOI: 10.1002/adbi.201900311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the outcome of the conflict between the host immune system and cancer cells. The crosstalk between immune cells and tumor cells within the tumor microenvironment (TME) influences tumor progression and metastasis. Many studies have clarified the cellular and molecular events that can induce cancer cells to escape immune surveillance, including those involving tumor-induced myeloid cell-mediated immunosuppression. Emerging evidence indicates that tumor-infiltrating myeloid cells (TIMs) accelerate tumor growth and induce angiogenesis, metastasis, and therapy resistance once converted into potent immunosuppressive cells. Here, how tumor infiltrating myeloid cells participate in tumor immune evasion and the prospects of these cells in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| | - Hui Wang
- China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
27
|
HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 2021; 40:1836-1850. [PMID: 33564072 PMCID: PMC7946638 DOI: 10.1038/s41388-020-01636-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
Collapse
|
28
|
Xu Y, Liu Z, Lv L, Li P, Xiu B, Qian W, Liang A. MiRNA-340-5p mediates the functional and infiltrative promotion of tumor-infiltrating CD8 + T lymphocytes in human diffuse large B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:238. [PMID: 33168024 PMCID: PMC7653890 DOI: 10.1186/s13046-020-01752-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Background CD8+ tumor-infiltrating T lymphocytes (T-TILs) in the tumor microenvironment (TME) play an important role in tumor development, and miRNAs regulate tumor cell interactions with the microenvironment. T-TIL-based tumor immunotherapy provides a promising treatment strategy in diffuse large B-cell lymphoma (DLBCL). MiRNAs tend to be attractive targets for novel antitumor interventions. Methods Weighted gene coexpression network analysis (WGCNA), CIBERSORT analysis and Cox regression analysis were used to identify CD8+ T-TIL-related miRNAs. RT-PCR, western blotting, immunohistochemistry (IHC), in situ hybridization (ISH), luciferase reporter assay, coimmunoprecipitation and ubiquitination analyses were used to detect miRNA, mRNA and protein expression and their combination. The viability and function of CD8+ T cells after stimulation were evaluated by enzyme-linked immunosorbent assay (ELISA), cytotoxicity assay, functional avidity assessment, flow cytometry and Cell Counting Kit-8 (CCK-8) assay. DLBCL cell lines, primary cells and a murine xenograft model established with A20 cell injection were used as in vitro and in vivo experimental models. Results MiR-340-5p was positively correlated with CD8+ T-TILs in DLBCL patients, and KMT5A was a direct target gene of miR-340-5p. CD8+ T-cell function was significantly enhanced by miR-340-5p mimics both in vitro and in vivo, which was reversed by KMT5A overexpression. We demonstrated that COP1/CD73 was involved in the downstream mechanism of the miR-340-5p/KMT5A axis involving ubiquitination. In vivo, we validated an improved CD8+ T-TIL infiltration rate and tumor suppression with miR-340-5p treatment. Furthermore, miR-340-5p directly regulated the biological activity of DLBCL cells without CD8+ T-cell participation. Conclusions MiR-340-5p promoted CD8+ T-TIL infiltration and antitumor function by regulating KMT5A and COP1 and further activating CD73 ubiquitination. MiR-340-5p is potentially a novel target for DLBCL immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01752-2.
Collapse
Affiliation(s)
- Yangyang Xu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lixin Lv
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|