1
|
Shi J, Cui X, Wang J, Liu G, Meng J, Zhang Y. Crosstalk between the tumor immune microenvironment and metabolic reprogramming in pancreatic cancer: new frontiers in immunotherapy. Front Immunol 2025; 16:1564603. [PMID: 40356913 PMCID: PMC12066759 DOI: 10.3389/fimmu.2025.1564603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
In recent years, the incidence and mortality of pancreatic cancer (PC) are increasing year by year. The highly heterogeneous nature of PC, its strong immune escape ability and easy metastasis make it the most lethal malignant tumor in the world. With the rapid development of sequencing technology, the complex components in the tumor microenvironment (TME) of PC have been gradually revealed. Interactions between pancreatic stellate cells, tumor-associated fibroblasts, various types of immune cells, and cancer cells collectively promote metabolic reprogramming of all types of cells. This metabolic reprogramming further enhances the immune escape mechanism of tumor cells and ultimately induces tumor cells to become severely resistant to chemotherapy and immunotherapy. On the one hand, PC cells achieve re and rational utilization of glucose, amino acids and lipids through metabolic reprogramming, which in turn accomplishes biosynthesis and energy metabolism requirements. Under such conditions, tumorigenesis, proliferation and metastasis are ultimately promoted. On the other hand, various types of immune cells in the tumor immune microenvironment (TIME) also undergo metabolic reprogramming, which leads to tumor progression and suppression of anti-immune responses by inhibiting the function of normal anti-tumor immune cells and enhancing the function of immunosuppressive cells. The aim of this review is to explore the interaction between the immune microenvironment and metabolic reprogramming in PC. The focus is to summarize the specific mechanisms of action of metabolic reprogramming of PC cells and metabolic reprogramming of immune cells. In addition, this review will summarize the mechanisms of immunotherapy resistance in PC cells. In the future, targeting specific mechanisms of metabolic reprogramming will provide a solid theoretical basis for the development of combination therapies for PC.
Collapse
Affiliation(s)
- Jintai Shi
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Cui
- Pharmacy Department, Jinan Huaiyin People’s Hospital, Jinan, China
| | - Junlin Wang
- Department of Pharmacy, Shandong University Second People’s Hospital, Jinan, China
| | - Guangqia Liu
- Department of Pharmacy, Jinan Licheng District Liubu Town Health Centre, Jinan, China
| | - Jiayin Meng
- Department of Pharmacy, Jinan Second People’s Hospital, Jinan, China
| | - Yingjie Zhang
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Ye W, Zhang X, Tang Z, Hu Y, Zheng Y, Yuan Y. Comprehensive analysis of glycometabolism-related genes reveals PLOD2 as a prognostic biomarker and therapeutic target in gastric cancer. BMC Gastroenterol 2025; 25:256. [PMID: 40229676 PMCID: PMC11998276 DOI: 10.1186/s12876-025-03878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, with limited therapeutic options and a poor prognosis, particularly in advanced stages. Glycometabolism, a hallmark of cancer, plays a critical role in tumor progression, immune evasion, and response to therapy. However, the specific roles of glycometabolism-related genes and their prognostic and therapeutic implications in GC remain inadequately understood. METHODS Transcriptomic and clinical data from GC patients were retrieved from TCGA and GEO databases. Glycometabolism-related genes were identified and analyzed using machine learning algorithms to construct a prognostic model. Functional assays, immune profiling, and pathway enrichment analyses were performed to explore the roles of these genes in tumor progression, immune-modulatory effects, and drug resistance. PLOD2, the gene with the highest prognostic significance, was further investigated to uncover its underlying regulatory mechanisms, roles in immune modulation, and contribution to therapeutic resistance. RESULTS A glycometabolism-related prognostic model consisting of four genes (PLOD2, CHSY3, SLC2A3 and SLC5A1) was developed and validated, effectively stratifying GC patients into high- and low-risk subgroups with distinct survival outcomes. Among these, PLOD2 emerged as the most significant gene, exhibiting strong associations with tumor progression and poor survival. Functional analyses revealed that PLOD2 promotes glycolysis and tumor progression through activation of the PI3K/AKT/mTOR pathway. Immune profiling revealed that PLOD2 overexpression is associated with an immunosuppressive tumor microenvironment, characterized by increased M2 macrophage infiltration and reduced immune activity. Moreover, treatment with rapamycin, an mTOR inhibitor, significantly suppressed PLOD2-mediated proliferation and anchorage-independent growth in GC cells, highlighting the central role of the PI3K/AKT/mTOR pathway in PLOD2-driven oncogenic behaviors. CONCLUSIONS This study identifies PLOD2 as a key prognostic biomarker and therapeutic target in gastric cancer. As a central component in a glycometabolism-related model, PLOD2 promotes glycolysis, tumor progression, and immune evasion via the PI3K/AKT/mTOR pathway. The model effectively stratifies patient risk, offering both prognostic utility and therapeutic insight. Targeting PLOD2-mediated pathways may represent a promising strategy for precision therapy and improved clinical outcomes in gastric cancer.
Collapse
Affiliation(s)
- Wanchun Ye
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, Jinan Fourth People's Hospital, Jinan, China
| | - Zhongjie Tang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yufeng Hu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuanliang Zheng
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuping Yuan
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
3
|
Dong XM, Chen L, Xu YX, Wu P, Xie T, Liu ZQ. Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies. Cancer Gene Ther 2025; 32:165-183. [PMID: 39794467 DOI: 10.1038/s41417-024-00858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Pu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Liu Q, Liu Z, Zhang X, Zeng A, Song L. Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment. Int J Biol Sci 2025; 21:1202-1221. [PMID: 39897050 PMCID: PMC11781164 DOI: 10.7150/ijbs.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
The interplay between metabolic pathways and immune escape has emerged as a captivating research area in oncobiology. Among these, the Warburg effect stands out as a hallmark metabolic reprogramming in cancer, characterized by elevated glucose utilization and excessive lactic acid production through anaerobic glycolysis. Key glycolytic enzymes not only fulfill the bioenergetic demands of cancer cells but also exhibit moonlighting roles, including regulation of epigenetic modifications, protein kinase activity, and immune escape mechanisms, thereby reshaping the tumor microenvironment. Tumor-specific vascular architecture facilitates lactate accumulation, which drives tumor progression by impairing immune cell function and acting as a signaling molecule to recruit immunosuppressive cells and modulate immune checkpoint pathways. The PD-1/PD-L1 co-stimulatory pathway plays a crucial role in negatively modulating the activation, proliferation, and cytokine secretion by T-lymphocytes. This review primarily focuses on elucidating the regulation and mechanisms underlying PD-1/PD-L1 signaling axis during glycolysis in tumor cells as well as surrounding cells. In the era of precision medicine, there is a particular interest in leveraging 18F-FDG PET/CT imaging as a valuable tool to assess PD-L1 expression status for more targeted therapeutic interventions. Additionally, the development of natural compounds capable of modulating metabolism opens new avenues for metabolism-based immunotherapy, though further studies are required to validate their in vivo efficacy.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ma Y, Liu E, Fan H, Li C, Huang P, Cui M, Wang Z, Zhou J, Chen K. RBM47 promotes cell proliferation and immune evasion by upregulating PDIA6: a novel mechanism of pancreatic cancer progression. J Transl Med 2024; 22:1164. [PMID: 39741300 DOI: 10.1186/s12967-024-05970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC. Moreover, RBM47 was predicted to bind to the 3'-UTR region of Protein Disulfide Isomerase Family A Member 6 (PDIA6), an oncogene of the development of PC. Therefore, we supposed that RBM47 might affect PC progression by regulating PDIA6. METHODS Bioinformatics analysis was performed to screen the candidate gene affecting PC progression using public databases. Loss- and gain-of-function effects of RBM47 on cell proliferation, tumor growth, and immune evasion were determined by CCK-8, EdU incorporation, colony formation assays, the xenogeneic tumor model, and co-culture system of PC and NK-92 cells. RBM47-RNA immunoprecipitation (RIP) followed by PCR and dual luciferase reporter assay were used to detect whether RBM47 could interact with the PDIA6 mRNA and how RBM47 would regulate the transcriptional activity of PDIA6, respectively. Simultaneous overexpression of PDIA6 in RBM47 knockdown PC cells was conducted to clarify whether PDIA6 would mediated effects of RBM47. Given the important role of cellular metabolism in cells proliferation and immune evasion, PC cells with RBM47 knockdown were subjected to metabolomics analysis to further investigate how RBM47 regulate PC progression. RESULTS RBM47 overexpression drove PC progression by promoting cell proliferation and xenografted tumor growth. Consistently, our results showed that RBM47 overexpression weakened sensitivity of PC cells to cytotoxic NK cells. However, RBM47 knockdown exhibited the opposite effects on proliferation and immune evasion of PC cells. RBM47 was able to bind to the 3'-UTR region of PDIA6, maintained PDIA6 mRNA stability, and increased the PDIA6 expression in PC cells. Rescue experiments supported that PDIA6 overexpression reversed the suppressing effects of RBM47 knockdown on cell proliferation and immune evasion. RBM47 knockdown significantly changed metabolites of PC cells. CONCLUSIONS In summary, our findings demonstrate that RBM47 contributes to PC progression, which might be mediated by the upregulated PDIA6 expression and the altered cellular metabolites in PC cells, offering a potential therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenfei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Meiying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Jing Zhou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
6
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
8
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Hui K, Dong C, Hu C, Li J, Yan D, Jiang X. VEGFR affects miR-3200-3p-mediated regulatory T cell senescence in tumour-derived exosomes in non-small cell lung cancer. Funct Integr Genomics 2024; 24:31. [PMID: 38363405 DOI: 10.1007/s10142-024-01305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Numerous studies have demonstrated that regulatory T (Treg) cells play an important role in the tumour microenvironment (TME). The aim of this study was to investigate whether VEGFR2 affects the expression of miR-3200-3p in exosomes secreted by tumour cells, thereby influencing Treg senescence in the TME. The results showed that VEGFR2 expression level was the highest in Calu-1 cells, and after transfection with si-VEGFR2, the exosomes secreted from Calu-1 cells were extracted and characterised with no significant difference from the exosomes of the untransfected group, but the expression of miR-3200-3p in the exosomes of the transfected si-VEGFR2 group was elevated. The Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM) results suggested that exosomes highly expressing miR-3200-3p could inhibit Treg cell viability and promote apoptosis levels when treated with Treg cells. Detection of the senescence-associated proteins p16 INK4A and MMP3 by western blot (WB) revealed that exosomes highly expressing miR-3200-3p were able to elevate their protein expression levels. Tumour xenograft experiments demonstrated that exosomes with high miR-3200-3p expression promoted Treg cell senescence and inhibited subcutaneous tumour growth in nude mice. Dual-luciferase reporter assays and RNA pull-down assays showed that miR-3200-3p could be linked with DDB1. Overexpression of DDB1 reverses changes in DCAF1/GSTP1/ROS protein expression caused by exosomes with high miR-3200-3p expression. In conclusion, inhibition of VEGFR2 expression in tumour cells promotes the expression of miR-3200-3p in exosomes secreted by tumour cells. miR-3200-3p enters the TME through exosomes and acts on DDB1 in Treg cells to promote senescence of Treg cells to inhibit tumour progression.
Collapse
Affiliation(s)
- Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222061, Jiangsu, China
| | - Changhong Dong
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222061, Jiangsu, China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222061, Jiangsu, China
| | - Jiawen Li
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Dongyue Yan
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222061, Jiangsu, China
| | - Xiaodong Jiang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222061, Jiangsu, China.
| |
Collapse
|
10
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Liu J, Zhou W, Luo X, Chen Y, Wong C, Liu Z, Bo Zheng J, Yu Mo H, Chen J, Li J, Zhong M, Xu Y, Zhang Q, Pu H, Wu Q, Jin Y, Wang Z, Xu R, Luo H. Long noncoding RNA Regulating ImMune Escape regulates mixed lineage leukaemia protein-1-H3K4me3-mediated immune escape in oesophageal squamous cell carcinoma. Clin Transl Med 2023; 13:e1410. [PMID: 37712124 PMCID: PMC10502462 DOI: 10.1002/ctm2.1410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Predictive biomarkers for oesophageal squamous cell carcinoma (ESCC) immunotherapy are lacking, and immunotherapy resistance remains to be addressed. The role of long noncoding RNA (lncRNA) in ESCC immune escape and immunotherapy resistance remains to be elucidated. METHODS The tumour-associated macrophage-upregulated lncRNAs and the exosomal lncRNAs highly expressed in ESCC immunotherapy nonresponders were identified by lncRNA sequencing and polymerase chain reaction assays. CRISPR-Cas9 was used to explore the functional roles of the lncRNA. RNA pull-down, MS2-tagged RNA affinity purification (MS2-TRAP) and RNA-binding protein immunoprecipitation (RIP) were performed to identify lncRNA-associated proteins and related mechanisms. In vivo, the humanized PBMC (hu-PBMC) mouse model was established to assess the therapeutic responses of specific lncRNA inhibitors and their combination with programmed cell death protein 1 (PD-1) monoclonal antibody (mAb). Single-cell sequencing, flow cytometry, and multiplex fluorescent immunohistochemistry were used to analyze immune cells infiltrating the tumour microenvironment. RESULTS We identified a lncRNA that is involved in tumour immune evasion and immunotherapy resistance. High LINC02096 (RIME) expression in plasma exosomes correlates with a reduced response to PD-1 mAb treatment and poor prognosis. Mechanistically, RIME binds to mixed lineage leukaemia protein-1 (MLL1) and prevents ankyrin repeat and SOCS box containing 2 (ASB2)-mediated MLL1 ubiquitination, improving the stability of MLL1. RIME-MLL1 increases H3K4me3 levels in the promoter regions of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO-1), constitutively increasing the expression of PD-L1/IDO-1 in tumour cells and inhibiting CD8+ T cells infiltration and activation. RIME depletion in huPBMC-NOG mice significantly represses tumour development and improves the effectiveness of PD-1 mAb treatment by activating T-cell-mediated antitumour immunity. CONCLUSIONS This study reveals that the RIME-MLL1-H3K4me3 axis plays a critical role in tumour immunosuppression. Moreover, RIME appears to be a potential prognostic biomarker for immunotherapy and developing drugs that target RIME may be a new therapeutic strategy that overcomes immunotherapy resistance and benefits patients with ESCC.
Collapse
Affiliation(s)
- Jia Liu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Wei‐Yi Zhou
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Xiao‐Jing Luo
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Yan‐Xing Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Chau‐Wei Wong
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Ze‐Xian Liu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Jia‐ Bo Zheng
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Hai‐ Yu Mo
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Jun‐Quan Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Jia‐Jun Li
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Ming Zhong
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Yu‐Hong Xu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qi‐Hua Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Heng‐Ying Pu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qi‐Nian Wu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Ying Jin
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Zi‐Xian Wang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
| | - Rui‐Hua Xu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Hui‐Yan Luo
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| |
Collapse
|
12
|
Ka Y, Ito R, Nozu R, Tomiyama K, Ueno M, Ogura T, Takahashi R. Establishment of a human microbiome- and immune system-reconstituted dual-humanized mouse model. Exp Anim 2023; 72:402-412. [PMID: 37019665 PMCID: PMC10435363 DOI: 10.1538/expanim.23-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Humanized mice are widely used to study the human immune system in vivo and investigate therapeutic targets for various human diseases. Immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice transferred with human hematopoietic stem cells are a useful model for studying human immune systems and analyzing engrafted human immune cells. The gut microbiota plays a significant role in the development and function of immune cells and the maintenance of immune homeostasis; however, there is currently no available animal model that has been reconstituted with human gut microbiota and immune systems in vivo. In this study, we established a new model of CD34+ cell-transferred humanized germ-free NOG mice using an aseptic method. Flow cytometric analysis revealed that the germ-free humanized mice exhibited a lower level of human CD3+ T cells than the SPF humanized mice. Additionally, we found that the human CD3+ T cells slightly increased after transplanting human gut microbiota into the germ-free humanized mice, suggesting that the human microbiota supports T cell proliferation or maintenance in humanized mice colonized by the gut microbiota. Consequently, the dual-humanized mice may be useful for investigating the physiological role of the gut microbiota in human immunity in vivo and for application as a new humanized mouse model in cancer immunology.
Collapse
Affiliation(s)
- Yuyo Ka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ryoko Nozu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kayo Tomiyama
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masami Ueno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
13
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
14
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
15
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Mao W, Cai Y, Chen D, Jiang G, Xu Y, Chen R, Wang F, Wang X, Zheng M, Zhao X, Mei J. Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI Insight 2022; 7:e161940. [PMID: 35943796 PMCID: PMC9675559 DOI: 10.1172/jci.insight.161940] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has achieved breakthroughs in the treatment of advanced non-small cell lung cancer (NSCLC). Nevertheless, the low response due to immuno-cold (i.e., tumors with limited tumor-infiltrating lymphocytes) tumor microenvironment (TME) largely limits the application of ICB therapy. Based on the glycolytic/cholesterol synthesis axis, a stratification framework for EGFR-WT NSCLC was developed to summarize the metabolic features of immuno-cold and immuno-hot tumors. The cholesterol subgroup displays the worst prognosis in immuno-cold NSCLC, with significant enrichment of the cholesterol gene signature, indicating that targeting cholesterol synthesis is essential for the therapy for immuno-cold NSCLC. Statin, the inhibitor for cholesterol synthesis, can suppress the aggressiveness of NSCLC in vitro and in vivo and can also drastically reverse the phenotype of immuno-cold to an inflamed phenotype in vivo. This change led to a higher response to ICB therapy. Moreover, both our in-house data and meta-analysis further support that statin can significantly enhance ICB efficacy. In terms of preliminary mechanisms, statin could transcriptionally inhibit PD-L1 expression and induce ferroptosis in NSCLC cells. Overall, we reveal the significance of cholesterol synthesis in NSCLC and demonstrate the improved therapeutic efficacy of ICB in combination with statin. These findings could provide a clinical insight to treat NSCLC patients with immuno-cold tumors.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yun Cai
- Wuxi College of Clinical Medicine
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, and
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guanyu Jiang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Jie Mei
- Wuxi College of Clinical Medicine
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
17
|
Xiao C, Tian H, Zheng Y, Yang Z, Li S, Fan T, Xu J, Bai G, Liu J, Deng Z, Li C, He J. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front Cell Dev Biol 2022; 10:1013885. [PMID: 36200045 PMCID: PMC9527271 DOI: 10.3389/fcell.2022.1013885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer cells and immune cells all undergo remarkably metabolic reprogramming during the oncogenesis and tumor immunogenic killing processes. The increased dependency on glycolysis is the most typical trait, profoundly involved in the tumor immune microenvironment and cancer immunity regulation. However, how to best utilize glycolytic targets to boost anti-tumor immunity and improve immunotherapies are not fully illustrated. In this review, we describe the glycolytic remodeling of various immune cells within the tumor microenvironment (TME) and the deleterious effects of limited nutrients and acidification derived from enhanced tumor glycolysis on immunological anti-tumor capacity. Moreover, we elucidate the underlying regulatory mechanisms of glycolytic reprogramming, including the crosstalk between metabolic pathways and immune checkpoint signaling. Importantly, we summarize the potential glycolysis-related targets that are expected to improve immunotherapy benefits. Our understanding of metabolic effects on anti-tumor immunity will be instrumental for future therapeutic regimen development.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Chunxiang Li, ; Jie He,
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Chunxiang Li, ; Jie He,
| |
Collapse
|