1
|
Hanitrarimalala V, Bednarska I, Murakami T, Papadakos KS, Blom AM. Intracellular cartilage oligomeric matrix protein augments breast cancer resistance to chemotherapy. Cell Death Dis 2024; 15:480. [PMID: 38965233 PMCID: PMC11224260 DOI: 10.1038/s41419-024-06872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Chemotherapy persists as the primary intervention for breast cancer, with chemoresistance posing the principal obstacle to successful treatment. Herein, we show that cartilage oligomeric matrix protein (COMP) expression leads to increased cancer cell survival and attenuated apoptosis under treatment with several chemotherapeutic drugs, anti-HER2 targeted treatment, and endocrine therapy in several breast cancer cell lines tested. The COMP-induced chemoresistance was independent of the breast cancer subtype. Extracellularly delivered recombinant COMP failed to rescue cells from apoptosis while endoplasmic reticulum (ER)-restricted COMP-KDEL conferred resistance to apoptosis, consistent with the localization of COMP in the ER, where it interacted with calpain. Calpain activation was reduced in COMP-expressing cells and maintained at a lower level of activation during treatment with epirubicin. Moreover, the downstream caspases of calpain, caspases -9, -7, and -3, exhibited significantly reduced activation in COMP-expressing cells under chemotherapy treatment. Chemotherapy, when combined with calpain activators, rendered the cells expressing COMP more chemosensitive. Also, the anti-apoptotic proteins phospho-Bcl2 and survivin were increased in COMP-expressing cells upon chemotherapy. Cells expressing a mutant COMP lacking thrombospondin repeats exhibited reduced chemoresistance compared to cells expressing full-length COMP. Evaluation of calcium levels in the ER, cytosol, and mitochondria revealed that COMP expression modulates intracellular calcium homeostasis. Furthermore, patients undergoing chemotherapy or endocrine therapy demonstrated significantly reduced overall survival time when tumors expressed high levels of COMP. This study identifies a novel role of COMP in chemoresistance and calpain inactivation in breast cancer, a discovery with potential implications for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Izabela Bednarska
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, 350-0495, Japan
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| |
Collapse
|
2
|
Gorji-Bahri G, Krishna BM, Hagerling C, Orimo A, Jirström K, Papadakos KS, Blom AM. Stromal cartilage oligomeric matrix protein as a tumorigenic driver in ovarian cancer via Notch3 signaling and epithelial-to-mesenchymal transition. J Transl Med 2024; 22:351. [PMID: 38615020 PMCID: PMC11016227 DOI: 10.1186/s12967-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-β. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active β-catenin in ovarian cancer cells. CONCLUSION This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - B Madhu Krishna
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University, Tokyo, Japan
| | - Karin Jirström
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
3
|
Papadakos KS, Gorji-Bahri G, Gialeli C, Hedner C, Hagerling C, Svensson MC, Jeremiasen M, Borg D, Fristedt R, Jirström K, Blom AM. The prognostic and potentially immunomodulatory role of cartilage oligomeric matrix protein in patients with gastric and esophageal adenocarcinoma. Cancer Immunol Immunother 2024; 73:93. [PMID: 38563861 PMCID: PMC10987352 DOI: 10.1007/s00262-024-03656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP) is a novel regulator of the tumor microenvironment. Studies in colon cancer and pancreatobiliary adenocarcinoma have revealed COMP expression to be associated with decreased infiltration of immune cells in the tumor microenvironment. Herein, the expression of COMP was investigated in gastric and esophageal adenocarcinoma with particular reference to its the relationship with the immune microenvironment. METHODS COMP expression was evaluated in tissue microarrays representing primary tumors from 159 patients with chemo- and radiotherapy naïve esophageal and gastric adenocarcinoma and 67 matched samples of lymph node metastases using immunohistochemistry. Additionally, collagen fibers were stained with Sirius Red and evaluated with the FIJI macro TWOMBLI algorithm. RESULTS The expression of COMP in cancer cells in the entire cohort was associated with shorter overall survival (OS) (p = 0.013) and recurrence-free survival (RFS) (p = 0.029), while COMP expression in the stroma was correlated with shorter RFS (p = 0.042). Similar correlations were found for patients with gastric adenocarcinoma, whereas COMP expression was not prognostic in esophageal adenocarcinoma. Further, in the entire cohort, the expression of COMP in the stroma was correlated with exclusion of different populations of immune cells (CD8+, CD3+, FoxP3+, CD20+) from the tumor microenvironment. Finally, higher density and alignment of collagen fibers were correlated with the expression of COMP in the stroma. CONCLUSIONS Expression of COMP in gastric and esophageal adenocarcinoma was correlated with shorter OS and RFS. A reduced number of immune cells infiltrated the tumor microenvironment when COMP expression was detected. This phenomenon could be attributed to the denser collagen deposits, a hallmark of tumor fibrosis observed in COMP-expressing tumors.
Collapse
Affiliation(s)
- Konstantinos S Papadakos
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
| | - Gilar Gorji-Bahri
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
| | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
- Cardiovascular Research - Translational Studies, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | | | - Maria C Svensson
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Martin Jeremiasen
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - David Borg
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Richard Fristedt
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden.
| |
Collapse
|
4
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
5
|
Tian Y, Feng X, Zhou Z, Qin S, Chen S, Zhao J, Hou J, Liu D. Ginsenoside Compound K Ameliorates Osteoarthritis by Inhibiting the Chondrocyte Endoplasmic Reticulum Stress-Mediated IRE1α-TXNIP-NLRP3 Axis and Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1499-1509. [PMID: 36630614 DOI: 10.1021/acs.jafc.2c06134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Osteoarthritis (OA) is a common joint disease, and studies have reported that the endoplasmic reticulum stress (ERS) in chondrocytes caused by the cartilage tissue damage could mediate the activation of Nod-like receptor protein 3 (NLRP3) inflammasomes through inositol-requiring enzyme 1 alpha (IRE1α) and thioredoxin interacting protein (TXNIP). Ginsenoside compound K (CK) has an inhibitory effect on IRE1α activation. However, the role of IRE1α-TXNIP and its interaction with CK are still unclear. In this study, we examined the role and mechanism of action of CK in OA. We found that CK ameliorated OA and ERS in IL-1β-treated chondrocytes and a monoiodoacetate-induced rat OA model. The effect of CK on inflammation, pyroptosis, and ERS was blocked by the ERS inducer tunicamycin. In conclusion, CK hindered OA progression by inhibiting the ERS-IRE1α-TXNIP-NLRP3 axis. Overall, our data indicate that CK could be useful in the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xinyuan Feng
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jihui Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianglin Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
6
|
Blom AM, Gialeli C, Hagerling C, Berntsson J, Jirström K, Papadakos KS. Expression of Cartilage Oligomeric Matrix Protein in colorectal cancer is an adverse prognostic factor and correlates negatively with infiltrating immune cells and PD-L1 expression. Front Immunol 2023; 14:1167659. [PMID: 37207219 PMCID: PMC10188999 DOI: 10.3389/fimmu.2023.1167659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Cartilage Oligomeric Matrix Protein (COMP) is an oncogenic protein that has been associated with a decrease in infiltrating T-cells in periampullary adenocarcinoma. This study aimed to investigate whether this is also the case for colorectal cancer (CRC) and to evaluate the relationship between COMP expression and clinopathological features. Methods Immunohistochemistry was used to determine the expression levels of COMP in tumor cells and stroma in primary tumors from a cohort of 537 CRC patients. The expression of immune cell markers, including CD3+, CD8+, FoxP3+, CD68+, CD56+, CD163+, and PD-L1, was evaluated previously. Tumor fibrosis was assessed by Sirius Red staining and evaluation of collagen fiber organization. Results COMP expression correlated positively with TNM-stage and grade of differentiation. Patients with CRC expressing high levels of COMP had significantly shorter OS than those with low COMP expression (p<0.0001), and fewer infiltrating T-cells were detected in tumors with high COMP expression. Additionally, a negative correlation was identified between the expression of COMP and PD-L1 on both tumor cells and immune cells. Cox regression analysis showed that tumors expressing high levels of COMP had significantly shorter OS, independent of all evaluated immune cell markers. Tumor fibrosis was correlated with high expression of COMP in the stroma (p<0.0001), and tumors with high levels of COMP expression and denser fibrosis displayed more sparse immune cell infiltration. Discussion The results suggest that COMP expression in CRC may exert an immune regulatory effect by increasing dense fibrosis and decreasing immune cell infiltration. These findings support the notion that COMP is an important factor in the development and progression of CRC.
Collapse
Affiliation(s)
- Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
- *Correspondence: Anna M. Blom,
| | - Chrysostomi Gialeli
- Cardiovascular Research - Translational Studies, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Catharina Hagerling
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jonna Berntsson
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Karin Jirström
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Konstantinos S. Papadakos
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|