1
|
Giram P, Md Mahabubur Rahman K, Aqel O, You Y. In Situ Cancer Vaccines: Redefining Immune Activation in the Tumor Microenvironment. ACS Biomater Sci Eng 2025; 11:2550-2583. [PMID: 40223683 DOI: 10.1021/acsbiomaterials.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanomedicines have significantly improved life expectancy and survival rates for cancer patients in current standard care. However, recurrence of cancer due to metastasis remains a significant challenge. Vaccines can provide long-term protection and are ideal for preventing bacterial and viral infections. Cancer vaccines, however, have shown limited therapeutic efficacy and raised safety concerns despite extensive research. Cancer vaccines target and stimulate responses against tumor-specific antigens and have demonstrated great potential for cancer treatment in preclinical studies. However, tumor-associated immunosuppression and immune tolerance driven by immunoediting pose significant challenges for vaccine design. In situ vaccination represents an alternative approach to traditional cancer vaccines. This strategy involves the intratumoral administration of immunostimulants to modulate the growth and differentiation of innate immune cells, such as dendritic cells, macrophages, and neutrophils, and restore T-cell activity. Currently approved in situ vaccines, such as T-VEC, have demonstrated clinical promise, while ongoing clinical trials continue to explore novel strategies for broader efficacy. Despite these advancements, failures in vaccine research highlight the need to address tumor-associated immune suppression and immune escape mechanisms. In situ vaccination strategies combine innate and adaptive immune stimulation, leveraging tumor-associated antigens to activate dendritic cells and cross-prime CD8+ T cells. Various vaccine modalities, such as nucleotide-based vaccines (e.g., RNA and DNA vaccines), peptide-based vaccines, and cell-based vaccines (including dendritic, T-cell, and B-cell approaches), show significant potential. Plant-based viral approaches, including cowpea mosaic virus and Newcastle disease virus, further expand the toolkit for in situ vaccination. Therapeutic modalities such as chemotherapy, radiation, photodynamic therapy, photothermal therapy, and Checkpoint blockade inhibitors contribute to enhanced antigen presentation and immune activation. Adjuvants like CpG-ODN and PRR agonists further enhance immune modulation and vaccine efficacy. The advantages of in situ vaccination include patient specificity, personalization, minimized antigen immune escape, and reduced logistical costs. However, significant barriers such as tumor heterogeneity, immune evasion, and logistical challenges remain. This review explores strategies for developing potent cancer vaccines, examines ongoing clinical trials, evaluates immune stimulation methods, and discusses prospects for advancing in situ cancer vaccination.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Osama Aqel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Farahavar G, Abolmaali SS, Biabanikhankahdani R, Tamaddon AM. Synergistic action of combining photodynamic therapy with immunotherapy for eradicating solid tumors in animal models: A systematic review. Crit Rev Oncol Hematol 2025; 209:104691. [PMID: 40058741 DOI: 10.1016/j.critrevonc.2025.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
Malignancies maintain a high rate of mortality worldwide each year, requiring the development of novel therapeutic platforms. Immunotherapy approaches are considered a revolutionary treatment for overcoming malignancies. Photodynamic therapy (PDT) has attracted significant attention in various cancer types. Recent progress in cancer therapies has underscored the potential of combining PDT with immunotherapy. This approach can improve therapeutic outcomes by directly eliminating tumor cells and boosting immune responses for sustained anti-tumor effects in the whole body. This study aims to determine the relative efficacy of combining PDT with immunotherapy compared to PDT alone. Following the PRISMA guidance, an extensive literature review was conducted utilizing Scopus, Web of Science, and PubMed to identify high-quality preclinical studies exploring various aspects of PDT combined with immunotherapy. The adopted PICO framework included studies with rigorous experimental designs and relevant outcomes. The present review reveals the characteristics of tumor models, delivery systems, photosensitizers, and immunotherapy approaches. Key findings indicate that the combined PDT-immunotherapy approach shows promise in treating multiple tumors according to their size, therapeutic biomarkers, and inhibition of distant tumors. Finally, this integrated therapeutic strategy holds significant promise for advancing cancer treatment paradigms by potentiating each treatment efficacy; however, its clinical utility requires careful consideration of the associated challenges.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roya Biabanikhankahdani
- Department of Basic Sciences, College of Dentistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
4
|
Wang M, Hu D, Yang Y, Shi K, Li J, Liu Q, Li Y, Li R, Pan M, Mo D, Chen W, Li X, Qian Z. Enhanced Chemo-Immunotherapy Strategy Utilizing Injectable Thermosensitive Hydrogel for The Treatment of Diffuse Peritoneal Metastasis in Advanced Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303819. [PMID: 37875399 PMCID: PMC10724414 DOI: 10.1002/advs.202303819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/17/2023] [Indexed: 10/26/2023]
Abstract
Patients with colorectal cancer (CRC) and diffuse peritoneal metastasis (PM) are not eligible for surgical intervention. Thus, palliative treatment remains the standard of care in clinical practice. Systemic chemotherapy fails to cause drug accumulation at the lesion sites, while intraperitoneal chemotherapy (IPC) is limited by high clearance rates and associated complications. Given the poor prognosis, a customized OxP/R848@PLEL hydrogel delivery system has been devised to improve the clinical benefit of advanced CRC with diffuse PM. This system is distinguished by its simplicity, security, and efficiency. Specifically, the PLEL hydrogel exhibits excellent injectability and thermosensitivity, enabling the formation of drug depots within the abdominal cavity, rendering it an optimal carrier for IPC. Oxaliplatin (OxP), a first-line drug for advanced CRC, is cytotoxic and enhances the immunogenicity of tumors by inducing immunogenic cell death. Furthermore, OxP and resiquimod (R848) synergistically enhance the maturation of dendritic cells, promote the expansion of cytotoxic T lymphocytes, and induce the formation of central memory T cells. Moreover, R848 domesticates macrophages to an anti-tumor phenotype. OxP/R848@PLEL effectively eradicates peritoneal metastases, completely inhibits ascites production, and significantly prolongs mice lifespan. As such, it provides a promising approach to managing diffuse PM in patients with CRC without surgical indications.
Collapse
Affiliation(s)
- Meng Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - DanRong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation MedicineKey Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengdu610041China
| | - Yun Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - JiaNan Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - QingYa Liu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - YiCong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation MedicineKey Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengdu610041China
| | - Meng Pan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Dong Mo
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wen Chen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - XiCheng Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - ZhiYong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
5
|
Tang Y, Kim JY, Ip CKM, Bahmani A, Chen Q, Rosenberger MG, Esser-Kahn AP, Ferguson AL. Data-driven discovery of innate immunomodulators via machine learning-guided high throughput screening. Chem Sci 2023; 14:12747-12766. [PMID: 38020385 PMCID: PMC10646978 DOI: 10.1039/d3sc03613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The innate immune response is vital for the success of prophylactic vaccines and immunotherapies. Control of signaling in innate immune pathways can improve prophylactic vaccines by inhibiting unfavorable systemic inflammation and immunotherapies by enhancing immune stimulation. In this work, we developed a machine learning-enabled active learning pipeline to guide in vitro experimental screening and discovery of small molecule immunomodulators that improve immune responses by altering the signaling activity of innate immune responses stimulated by traditional pattern recognition receptor agonists. Molecules were tested by in vitro high throughput screening (HTS) where we measured modulation of the nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) and the interferon regulatory factors (IRF) pathways. These data were used to train data-driven predictive models linking molecular structure to modulation of the NF-κB and IRF responses using deep representational learning, Gaussian process regression, and Bayesian optimization. By interleaving successive rounds of model training and in vitro HTS, we performed an active learning-guided traversal of a 139 998 molecule library. After sampling only ∼2% of the library, we discovered viable molecules with unprecedented immunomodulatory capacity, including those capable of suppressing NF-κB activity by up to 15-fold, elevating NF-κB activity by up to 5-fold, and elevating IRF activity by up to 6-fold. We extracted chemical design rules identifying particular chemical fragments as principal drivers of specific immunomodulation behaviors. We validated the immunomodulatory effect of a subset of our top candidates by measuring cytokine release profiles. Of these, one molecule induced a 3-fold enhancement in IFN-β production when delivered with a cyclic di-nucleotide stimulator of interferon genes (STING) agonist. In sum, our machine learning-enabled screening approach presents an efficient immunomodulator discovery pipeline that has furnished a library of novel small molecules with a strong capacity to enhance or suppress innate immune signaling pathways to shape and improve prophylactic vaccination and immunotherapies.
Collapse
Affiliation(s)
- Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Jeremiah Y Kim
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Carman K M Ip
- Cellular Screening Center, University of Chicago Chicago IL 60637 USA
| | - Azadeh Bahmani
- Cellular Screening Center, University of Chicago Chicago IL 60637 USA
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Matthew G Rosenberger
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| |
Collapse
|
6
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Szebeni GJ, Alföldi R, Nagy LI, Neuperger P, Gémes N, Balog JÁ, Tiszlavicz L, Puskás LG. Introduction of an Ultraviolet C-Irradiated 4T1 Murine Breast Cancer Whole-Cell Vaccine Model. Vaccines (Basel) 2023; 11:1254. [PMID: 37515069 PMCID: PMC10386199 DOI: 10.3390/vaccines11071254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of immunotherapy has revolutionized cancer treatments. However, the application of immune checkpoint inhibitors may entail severe side effects, with the risk of therapeutic resistance. The generation of chimeric antigen receptor (CAR) T-cells or CAR-NK cells requires specialized molecular laboratories, is costly, and is difficult to adapt to the rapidly growing number of cancer patients. To provide a simpler but effective immune therapy, a whole-cell tumor vaccine protocol was established based on ultraviolet C (UCV)-irradiated 4T1 triple-negative breast cancer cells. The apoptosis of tumor cells after UVC irradiation was verified using resazurin and Annexin V/propidium iodide flow cytometric assays. Protective immunity was achieved in immunized BALB/c mice, showing partial remission. Adoptive transfer of splenocytes or plasma from the mice in remission showed a protective effect in the naive BALB/c mice that received a living 4T1 tumor cell injection. 4T1-specific IgG antibodies were recorded in the plasma of the mice following immunization with the whole-cell vaccine. Interleukin-2 (IL-2) and oligonucleotide 2006 (ODN2006) adjuvants were used for the transfer of splenocytes from C57BL/6 mice into cyclophosphamide-treated BALB/c mice, resulting in prolonged survival, reduced tumor growth, and remission in 33% of the cases, without the development of the graft-versus-host disease. Our approach offers a simple, cost-effective whole-cell vaccine protocol that can be administered to immunocompetent healthy organisms. The plasma or the adoptive transfer of HLA-matching immunized donor-derived leukocytes could be used as an immune cell therapy for cancer patients.
Collapse
Affiliation(s)
- Gábor J Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14, H7761 Kozármisleny, Hungary
| | - Róbert Alföldi
- AstridBio Technologies Ltd., Wimmer Fülöp utca 1, H6728 Szeged, Hungary
| | - Lajos I Nagy
- Avidin Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - József Á Balog
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, H6725 Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- Avidin Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| |
Collapse
|
8
|
Valerio TI, Furrer CL, Sadeghipour N, Patrock SJX, Tillery SA, Hoover AR, Liu K, Chen WR. Immune modulations of the tumor microenvironment in response to phototherapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16:2330007. [PMID: 38550850 PMCID: PMC10976517 DOI: 10.1142/s1793545823300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The tumor microenvironment (TME) promotes pro-tumor and anti-inflammatory metabolisms and suppresses the host immune system. It prevents immune cells from fighting against cancer effectively, resulting in limited efficacy of many current cancer treatment modalities. Different therapies aim to overcome the immunosuppressive TME by combining various approaches to synergize their effects for enhanced anti-tumor activity and augmented stimulation of the immune system. Immunotherapy has become a major therapeutic strategy because it unleashes the power of the immune system by activating, enhancing, and directing immune responses to prevent, control, and eliminate cancer. Phototherapy uses light irradiation to induce tumor cell death through photothermal, photochemical, and photo-immunological interactions. Phototherapy induces tumor immunogenic cell death, which is a precursor and enhancer for anti-tumor immunity. However, phototherapy alone has limited effects on long-term and systemic anti-tumor immune responses. Phototherapy can be combined with immunotherapy to improve the tumoricidal effect by killing target tumor cells, enhancing immune cell infiltration in tumors, and rewiring pathways in the TME from anti-inflammatory to pro-inflammatory. Phototherapy-enhanced immunotherapy triggers effective cooperation between innate and adaptive immunities, specifically targeting the tumor cells, whether they are localized or distant. Herein, the successes and limitations of phototherapy combined with other cancer treatment modalities will be discussed. Specifically, we will review the synergistic effects of phototherapy combined with different cancer therapies on tumor elimination and remodeling of the immunosuppressive TME. Overall, phototherapy, in combination with other therapeutic modalities, can establish anti-tumor pro-inflammatory phenotypes in activated tumor-infiltrating T cells and B cells and activate systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Trisha I. Valerio
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Coline L. Furrer
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Negar Sadeghipour
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
- School of Electrical and Computer Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sophia-Joy X. Patrock
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sayre A. Tillery
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
9
|
Ghorbaninezhad F, Alemohammad H, Najafzadeh B, Masoumi J, Shadbad MA, Shahpouri M, Saeedi H, Rahbarfarzam O, Baradaran B. Dendritic cell-derived exosomes: A new horizon in personalized cancer immunotherapy? Cancer Lett 2023; 562:216168. [PMID: 37031915 DOI: 10.1016/j.canlet.2023.216168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Dendritic cells (DCs) release nanometer-sized membrane vesicles known as dexosomes, containing different molecules, particularly proteins, for presenting antigens, i.e., major histocompatibility complex (MHC)-I/II and CD86. Dexosomes can, directly and indirectly, stimulate antigen-reactive CD8+ and CD4+ T cell responses. Antigen-loaded dexosomes can lead to the development of potent anti-tumoral immune responses. Notably, developing dexosome-based cell-free vaccines could serve as a new vaccination platform in the era of immunotherapy for various cancers. Furthermore, combining dexosomes vaccination strategies with other treatment approaches can considerably increase tumor-specific T cell responses. Herein, we aimed to review how dexosomes interact with immune cells, e.g., CD4+ and CD8+ T cells and natural killer (NK) cells. Besides, we discussed the limitations of this approach and suggested potential strategies to improve its effectiveness for affected patients.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Shahpouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbarfarzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
11
|
Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021; 11:738323. [PMID: 34868932 PMCID: PMC8635494 DOI: 10.3389/fonc.2021.738323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianfeng Hua
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
12
|
Bussies PL, Richards EG, Rotz SJ, Falcone T. Targeted cancer treatment and fertility: effect of immunotherapy and small molecule inhibitors on female reproduction. Reprod Biomed Online 2021; 44:81-92. [PMID: 34674940 DOI: 10.1016/j.rbmo.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Targeted cancer therapy is rapidly evolving the landscape of personalized health care. Novel approaches to selectively impeding tumour growth carry significant potential to improve survival outcomes, particularly for reproductive-aged patients harbouring treatment refractory disease. Current agents fall within two classes: immunotherapy and small molecule inhibitors. These are collectively divided into the following subclasses: monoclonal antibodies; immunomodulators; adoptive cell therapy; treatment vaccines; kinase inhibitors; proteasome inhibitors; metalloproteinase and heat shock protein inhibitors; and promoters of apoptosis. The short- and long-term effects of these treatments on the female reproductive system are not well understood. As a result, clinicians are rendered unable to appropriately counsel women on downstream effects to their fertility. Data-driven consensus recommendations are desperately needed. This review aims to characterize the effect of targeted cancer therapy on the female hypothalamic-pituitary-ovary axis, direct ovarian function and conception.
Collapse
Affiliation(s)
- Parker L Bussies
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA
| | - Elliott G Richards
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA
| | - Seth J Rotz
- Cleveland Clinic Foundation, Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Cleveland OH, USA
| | - Tommaso Falcone
- Cleveland Clinic FoundNation, Department of Obstetrics and Gynecology, Cleveland OH, USA.
| |
Collapse
|
13
|
Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel) 2021; 13:cancers13164138. [PMID: 34439292 PMCID: PMC8393975 DOI: 10.3390/cancers13164138] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality. The vast majority of patients present with unresectable, advanced stage disease, for whom standard of care chemo(radio)therapy may improve survival by several months. Immunotherapy has led to a fundamental shift in the treatment of several advanced cancers. However, its efficacy in PDAC in terms of clinical benefit is limited, possibly owing to the immunosuppressive, inaccessible tumor microenvironment. Still, various immunotherapies have demonstrated the capacity to initiate local and systemic immune responses, suggesting an immune potentiating effect. In this review, we address PDAC's immunosuppressive tumor microenvironment and immune evasion methods and discuss a wide range of immunotherapies, including immunomodulators (i.e., immune checkpoint inhibitors, immune stimulatory agonists, cytokines and adjuvants), oncolytic viruses, adoptive cell therapies (i.e., T cells and natural killer cells) and cancer vaccines. We provide a general introduction to their working mechanism as well as evidence of their clinical efficacy and immune potentiating abilities in PDAC. The key to successful implementation of immunotherapy in this disease may rely on exploitation of synergistic effects between treatment combinations. Accordingly, future treatment approaches should aim to incorporate diverse and novel immunotherapeutic strategies coupled with cytotoxic drugs and/or local ablative treatment, targeting a wide array of tumor-induced immune escape mechanisms.
Collapse
|
14
|
Waghchaure M, Govardhane S, Shende P. Enhancement of immunopotentiation using tetanus toxoid-based nanoparticulate dissolvable microneedles. Biomed Microdevices 2021; 23:32. [PMID: 34181103 DOI: 10.1007/s10544-021-00571-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
The main objective of the present study was to prepare and evaluate dissolvable microneedle patch containing nanoparticles of tetanus toxoid without the use of any adjuvant and its immunopotentiation activity. Immunization with microneedles is a novel approach in vaccines delivery with advantages such as convenience, simple, and non-invasive therapy. The gelatin nanoparticles were prepared by a layer-by-layer coating method using polystyrene sulfonate (PSS), polyallylamine hydrochloride (PLA), and PLGA. The filtered gelatin nanoparticles were later dispersed in the aqueous PVP K10 solution and integrated into a mold to develop microneedles. The nanoparticles and their dissolvable microneedle patches were evaluated using particle size, surface charge, entrapment efficiency, SEM analysis, in-vitro, and in-vivo studies. The particle size was found in the order of PLGA-coated nanoparticles > layered gelatin nanoparticles > aminated gelatin nanoparticles > gelatin nanoparticles and aminated gelatin nanoparticles showed maximum entrapment efficiency (92.6 ± 3.25%). The microscopic SEM images showed the spherical-shaped particle formation, verifies that the nanoparticles were formed. The gelatin nanoparticles followed the prolonged release for the period of 8 h whereas the nanoparticle-loaded dissolvable microneedles showed the controlled release pattern for 24 h. Aminated nanoparticulate microneedle showed the highest antibody production against tetanus toxoid. Hence, the nanoparticulate dissolvable microneedles-based immunopotentiation can be used as an alternative for delivery of tetanus toxoid.
Collapse
Affiliation(s)
- Mansi Waghchaure
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
15
|
Branched Multipeptide-combined Adjuvants Potentially Improve the Antitumor Effects on Glioblastoma. J Immunother 2021; 44:151-161. [PMID: 33512855 DOI: 10.1097/cji.0000000000000359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
The promising immunotherapy effects of a multiple antigenic peptide on glioblastoma (GBM) in a previous study encourage the use of adjuvants to enhance its therapeutic efficacy. Among adjuvants, pan HLA-DR-binding epitope (PADRE) and anti-programmed cell death protein 1 (anti-PD1) have potentially been tested for cancer immunotherapy. Therefore, here we evaluated the ability of PADRE and anti-PD1 to enhance the function of the branched multipeptide against GBM. The potential utility of tumor-associated antigens (ErbB-2 and WT-1) targeting GBM with HLA-A24 was confirmed and a branched multipeptide was constructed from these antigens. The effects of the branched multipeptide and PADRE on immunophenotyping and polarized Th cytokine production in dendritic cells were clarified. The expression of PD1 on T cells and PDL1 on GBM cells was also investigated. The interferon-γ enzyme-linked immunospot and lactate dehydrogenase release assays were performed to determine the function of GBM peptide antigen-specific cytotoxic T cells against GBM cells. Overall, this study showed that both ErbB-2 and WT-1 are potential candidates for branched multipeptide construction. The branched multipeptide and PADRE enhanced the expression of major histocompatibility complex and co-stimulatory molecules and the production of polarized Th1 cytokines in dendritic cells. The increase in the number of interferon-γ+ effector T cells was consistent with the increase in the percentage specific lysis of GBM target cells by GBM peptide antigen-specific cytotoxic T cells in the presence of the branched multipeptide, PADRE, and anti-PD1. Our study suggests the combination of branched multipeptide and adjuvants such as PADRE and anti-PD1 can potentially enhance the effects of immunotherapy for GBM treatment.
Collapse
|
16
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
17
|
Anti-cancer Immunotherapies Targeting Telomerase. Cancers (Basel) 2020; 12:cancers12082260. [PMID: 32806719 PMCID: PMC7465444 DOI: 10.3390/cancers12082260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase is a reverse transcriptase that maintains telomeres length, compensating for the attrition of chromosomal ends that occurs during each replication cycle. Telomerase is expressed in germ cells and stem cells, whereas it is virtually undetectable in adult somatic cells. On the other hand, telomerase is broadly expressed in the majority of human tumors playing a crucial role in the replicative behavior and immortality of cancer cells. Several studies have demonstrated that telomerase-derived peptides are able to bind to HLA (human leukocyte antigen) class I and class II molecules and effectively activate both CD8+ and CD4+ T cells subsets. Due to its broad and selective expression in cancer cells and its significant immunogenicity, telomerase is considered an ideal universal tumor-associated antigen, and consequently, a very attractive target for anti-cancer immunotherapy. To date, different telomerase targeting immunotherapies have been studied in pre-clinical and clinical settings, these approaches include peptide vaccination and cell-based vaccination. The objective of this review paper is to discuss the role of human telomerase in cancer immunotherapy analyzing recent developments and future perspectives in this field.
Collapse
|
18
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
19
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001808. [PMID: 32538494 PMCID: PMC7669572 DOI: 10.1002/adma.202001808] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Indexed: 05/04/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020. [PMID: 32538494 DOI: 10.1002/adma.v32.3010.1002/adma.202001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sanam Chekuri
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chun Lai Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
22
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
23
|
Mauriello A, Manolio C, Cavalluzzo B, Avallone A, Borrelli M, Morabito A, Iovine E, Chambery A, Russo R, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Immunological effects of adjuvants in subsets of antigen presenting cells of cancer patients undergoing chemotherapy. J Transl Med 2020; 18:34. [PMID: 31973714 PMCID: PMC6977281 DOI: 10.1186/s12967-020-02218-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We have previously shown that HCC patients and healthy subjects are equally responsive to a RNAdjuvant®, a novel TLR-7/8/RIG-I agonist based on noncoding RNA developed by CureVac, by an ex vivo evaluation. However, the immunological effect of adjuvants on immune cells from cancer patients undergoing chemotherapy remains to be demonstrated. Different adjuvants currently used in cancer vaccine clinical trials were evaluated in the present study on immune cells from cancer patients before and after chemotherapy in an ex vivo setting. METHODS PBMCs were obtained from 4 healthy volunteers and 23 patients affected by either colon (OMA) or lung cancer (OT). The effect of CpG, Poly I:C, Imiquimod and RNA-based adjuvant (RNAdjuvant®) was assessed using a multiparametric approach to analyze network dynamics of early immune responses. Evaluation of CD80, CD86 and HLA-DR expression as well as the downstream effect on CD4+ T cell phenotyping was performed by flow cytometry; cytokine and chemokine production was evaluated by Bio-Plex ProTM. RESULTS Treatment with RNAdjuvant® induced the strongest response in cancer patients in terms of activation of innate and adoptive immunity. Indeed, CD80, CD86 and HLA-DR expression was found upregulated in circulating dendritic cells, which promoted a CD4+ T cell differentiation towards an effector phenotype. RNAdjuvant® was the only one to induce most of the cytokines/chemokines tested with a pronounced Th1 cytokine pattern. According to the different parameters evaluated in the study, no clear cut difference in immune response to adjuvants was observed between healthy subjects and cancer patients. Moreover, in the latter group, the chemotherapy treatment did not consistently correlate to a significant altered response in the different parameters. CONCLUSIONS The present study is the first analysis of immunological effects induced by adjuvants in cancer patients who undergo chemotherapy, who are enrolled in the currently ongoing cancer vaccine clinical trials. The results show that the RNAdjuvant® is a potent and Th1 driving adjuvant, compared to those tested in the present study. Most importantly, it is demonstrated that chemotherapy does not significantly impair the immune system, implying that cancer patients are likely to respond to a cancer vaccine even after a chemotherapy treatment.
Collapse
Affiliation(s)
- Angela Mauriello
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Carmen Manolio
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Beatrice Cavalluzzo
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Antonio Avallone
- GI Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Naples, Italy
| | - Marco Borrelli
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Naples, Italy
| | - Emanuele Iovine
- Thoracic Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Naples, Italy
| | - Angela Chambery
- Environmental, Biological and Pharmaceutical Science and Technology Dept, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosita Russo
- Environmental, Biological and Pharmaceutical Science and Technology Dept, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Naples, Italy
| | - Franco M Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Tagliamonte
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Luigi Buonaguro
- Laboratory of Cancer Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS "Fondazione Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| |
Collapse
|
24
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Poly(I:C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes. Int J Biol Macromol 2018; 113:1182-1187. [PMID: 29427678 DOI: 10.1016/j.ijbiomac.2018.02.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cell (DC)-derived exosomes (Dexo) has been confirmed to be able to induce the specific anti-tumor immune response ex vivo and in vivo. Here, the aim of this study was to evaluate the application of the antigen-pulsed Dexo as a new vaccination platform in immunotherapy for cervical cancer. The immunogenic profile of the different Dexo was assessed by the cell proliferation, cytokines secretion and effector functions of CD8+ T cells and the splenocytes from Dexo-vaccinated mice. Furthermore, the anti-tumor immunity elicited by Dexo was further compared in cervical cancer-bearing mice. Dexo from DCs loaded with E749-57 peptide could efficiently induce the cytotoxic activity of CD8+ T cells on TC-1 tumor cells ex vivo, the proliferation and IFN-γ excretion of CD8+ T cells. Moreover, Dexo vaccine promoted the immune responses of vaccinated mice splenocytes induced by antigen E7 in vitro restimulation. Of note, poly(I:C) was significantly more potent inducer of the antigen-loaded Dexo mediated protective immunity responses for cervical cancer and further evidenced by that Dexo(E7+pIC) markedly inhibited the tumor growth and improved the survival rate of the tumor-bearing mice. We provided evidence that poly(I:C) dramatically increased the potent antitumoral immunity induced by antigen-pulsed Dexo for ameliorating cervical cancer.
Collapse
|
26
|
Lin M, Chang AE, Wicha M, Li Q, Huang S. Development and Application of Cancer Stem Cell-Targeted Vaccine in Cancer Immunotherapy. ACTA ACUST UNITED AC 2017; 8. [PMID: 29423335 PMCID: PMC5800506 DOI: 10.4172/2157-7560.1000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ming Lin
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.,Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Max Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Shiang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|