1
|
Gong X, Gao H, Wang W, Xu T. Intramuscular Injection of rAAV2-retro for Low Motor Neuron Transduction: Evaluating Five Promoters. Int J Med Sci 2025; 22:775-789. [PMID: 39991760 PMCID: PMC11843134 DOI: 10.7150/ijms.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025] Open
Abstract
Recombinant adeno-associated viral vectors (rAAVs) can effectively deliver transgene to the nervous system. The selection of AAV serotype and promoter significantly influences the dynamics of the transgene expression, including its strength and cell-specificity. Previous studies demonstrated that in neonatal mice, the intramuscular (IM) injection of the rAAV2-retro vector could efficiently deliver transgene to lower motor neurons (LMNs) of the brainstem and spinal cord. However, the best promoter for the expression of transgene in the central neural system (CNS) using rAAV2-retro remains undetermined. This study compared five commonly used promoters, including mouse phosphoglycerate kinase (mPGK), CMV early enhancer/chicken β-actin/short β-globulin intron (CAG), human cytomegalovirus (hCMV), chicken β-actin (CBA), and human synapsin (hSyn) promoters. The IM (unilateral gastrocnemius muscle) injection of rAAV2-retro vectors packaged with the reporter constructs containing each promoter was performed in the newborn C57BL/6J mice. The levels of gene expression and the types of cells were examined using the light-sheet illumination imaging technique and confocal microscopy. Our findings revealed that rAAV2-retro primarily targeted the brainstem and spinal cord within the CNS. Among the five promoters tested, CAG and hCMV showed the highest gene expression. Almost all the transduced cells were identified as LMNs. Additionally, gene expression driven by hCMV was found to be dependent of the inclusion of WPRE and β-globin intron elements. Importantly, none of the promoters induced hepatotoxicity, ensuring the safety of rAAV2-retro-mediated expression. This study provided valuable insights for optimizing the rAAV2-retro-mediated gene delivery system to LMNs in the brainstem and spinal cord, which might have potential implications for research on motor neuron-related diseases.
Collapse
Affiliation(s)
- Xueqi Gong
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| | - Haitong Gao
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai 200032, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tonghui Xu
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
- Laboratory Animal Resource Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
3
|
Dandia HY, Pillai MM, Sharma D, Suvarna M, Dalal N, Madhok A, Ingle A, Chiplunkar SV, Galande S, Tayalia P. Acellular scaffold-based approach for in situ genetic engineering of host T-cells in solid tumor immunotherapy. Mil Med Res 2024; 11:3. [PMID: 38173045 PMCID: PMC10765574 DOI: 10.1186/s40779-023-00503-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Targeted T-cell therapy has emerged as a promising strategy for the treatment of hematological malignancies. However, its application to solid tumors presents significant challenges due to the limited accessibility and heterogeneity. Localized delivery of tumor-specific T-cells using biomaterials has shown promise, however, procedures required for genetic modification and generation of a sufficient number of tumor-specific T-cells ex vivo remain major obstacles due to cost and time constraints. METHODS Polyethylene glycol (PEG)-based three-dimensional (3D) scaffolds were developed and conjugated with positively charged poly-L-lysine (PLL) using carbamide chemistry for efficient loading of lentiviruses (LVs) carrying tumor antigen-specific T-cell receptors (TCRs). The physical and biological properties of the scaffold were extensively characterized. Further, the scaffold loaded with OVA-TCR LVs was implanted in B16F10 cells expressing ovalbumin (B16-OVA) tumor model to evaluate the anti-tumor response and the presence of transduced T-cells. RESULTS Our findings demonstrate that the scaffolds do not induce any systemic inflammation upon subcutaneous implantation and effectively recruit T-cells to the site. In B16-OVA melanoma tumor-bearing mice, the scaffolds efficiently transduce host T-cells with OVA-specific TCRs. These genetically modified T-cells exhibit homing capability towards the tumor and secondary lymphoid organs, resulting in a significant reduction of tumor size and systemic increase in anti-tumor cytokines. Immune cell profiling revealed a significantly high percentage of transduced T-cells and a notable reduction in suppressor immune cells within the tumors of mice implanted with these scaffolds. CONCLUSION Our scaffold-based T-cell therapy presents an innovative in situ localized approach for programming T-cells to target solid tumors. This approach offers a viable alternative to in vitro manipulation of T-cells, circumventing the need for large-scale in vitro generation and culture of tumor-specific T-cells. It offers an off-the-shelf alternative that facilitates the use of host cells instead of allogeneic cells, thereby, overcoming a major hurdle.
Collapse
Affiliation(s)
- Hiren Y Dandia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Meghna Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Arvind Ingle
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Shubhada V Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
4
|
Wang XY, Zhang WL, Zhang X, Fu YS, Wang HM, Sun QL, Li Q, Jia YL, Zhang JH, Wang TY. Combination of MAR and intron increase transgene expression of episomal vectors in CHO cells. Biotechnol J 2023; 18:e2200643. [PMID: 37551822 DOI: 10.1002/biot.202200643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Previous work has shown that the EF-1α promoter of episomal vectors maintains high-level transgene expression in stably transfected Chinese hamster ovary (CHO) cells. However, the transgene expression levels need to be further increased. Here, we first incorporated matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE), stabilizing anti repressor elements 40 (STAR 40) elements into episomal vector at different sites and orientations, and systemically assessed their effects on transgene expression in transfected CHO-K1 cells. Results showed that enhanced green fluorescent protein (eGFP) expression levels increased remarkably when MAR X-29 was inserted upstream of the promoter, followed by the insertion of MAR1 downstream of the poly A, and the orientation had no significant effect. Moreover, MAR X-29 combined with human cytomegalovirus intron (hCMVI) yielded the highest transgene expression levels (4.52-fold). Transgene expression levels were not exclusively dependent on transgene copy numbers and were not related to the mRNA expression level. In addition, vector with MAR X-29+hCMVI can induce herpes simplex virus thymidine kinase (HSV-TK) protein expression, and the HSV-TK protein showed a cell-killing effect and an obvious bystander effect on HCT116 cells. In conclusion, the combination of MAR X-29 and hCMV intron can achieve high efficiency transgene expression mediated by episomal vectors in CHO-K1 cells.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wei-Li Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Center for Medical Genetics, Nanyang Second General Hospital, Nanyang, China
| | - Xi Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Yu-Shun Fu
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Hao-Min Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qin Li
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yan-Long Jia
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Zhang J, Wang TY, Zhang C, Mi C, Geng S, Tang Y, Wang X. CMV/AAT promoter of MAR-based episomal vector enhanced transgene expression in human hepatic cells. 3 Biotech 2023; 13:354. [PMID: 37810190 PMCID: PMC10558423 DOI: 10.1007/s13205-023-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
We have previously developed a non-viral episomal vector based on matrix attachment region (MAR) that can facilitate plasmid replication episomally in mammal cells. In this study, we have focused on the development of an alternative tissue specific episomal vector by incorporating into cis-acting elements. We found that AAT promoter demonstrated the highest eGFP expression level in HepG2, Huh-7 and HL-7702 hepatic cells. Furthermore, hCMV enhancer when combined with AAT promoter significantly improved the eGFP expression level in the transfected HepG2 cells. The mean fluorescence intensity of eGFP in hCMV2 group was 1.33 fold, which was higher than that of the control (p < 0.01), followed by the hCMV1 group (1.21 fold). In addition, the percentages of eGFP-expressing cells in hCMV1 and hCMV2 groups were observed to be 49.3% and 57.2%, which were significantly higher than that of the enhancer-devoid control vector (44.3%) (p < 0.05). Moreover, the eGFP protein were up to 3.5 fold and 5.1 fold (p < 0.05), respectively. This observation could be related with the activities of some specific transcription factors (TFs) during the transcriptional process, such as SRF, REL and CREB1. The composite CMV/AAT promoter can be thus used for efficient transgene expression of MAR-based episomal vector in liver cells and as a potential gene transfer tools for the management of liver diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03774-x.
Collapse
Affiliation(s)
- Jihong Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Tian-Yun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Chunbo Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453000 China
| | - Chunliu Mi
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shaolei Geng
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan Province China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| |
Collapse
|
6
|
Li J, Liang Q, Zhou H, Zhou M, Huang H. Profiling the impact of the promoters on CRISPR-Cas12a system in human cells. Cell Mol Biol Lett 2023; 28:41. [PMID: 37198545 PMCID: PMC10190037 DOI: 10.1186/s11658-023-00454-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
The plasmid vector platform is the most commonly used vector for the expression of the versatile CRISPR-Cas technique and the promoter is a crucial element for the expression vector, thus profiling the impact of the promoters on CRISPR editors provides the basic information for the gene-editing toolkits and can be a guideline for its design. Herein, we made a parallel comparison among four commonly used promoters (CAG, ~ 1700 bp; EF1a core, ~ 210 bp; CMV, ~ 500 bp; and PGK, ~ 500 bp) in CRISPR-Cas12a system in mammalian cells to explore the impact of promoters on this powerful tool. We found that without badly damaging targeting specificity, the CAG promoter-driving Cas12a editor exhibited the most active (efficiency takes as 100%, specificity index = ~ 75%) in genomic cleavage, multiplex editing, transcriptional activation, and base editing, followed by promoter CMV (efficiency = 70 ~ 90% (vs CAG), specificity index = ~ 78%), and then EF1a core and PGK (both efficiency = 40-60%, vs CAG) but with higher specificity (specificity index = ~ 84% and ~ 82%, respectively). Therefore, CAG is recommended in the CRISPR-Cas12a system for the applications that need a robust editing activity but without size limitation, CMV mostly can be an alternative for CAG when requiring a smaller space, EF1a is similar to PGK with relatively high specificity, but has a smaller size, thus is more suitable for in vivo therapeutic applications. The data outlined the properties of the widely used promoters in the CRISPR-Cas12a system, which can be a guide for its applications and can be a useful resource for the gene-editing field.
Collapse
Affiliation(s)
- Jinhe Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Qinchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
- Guangzhou Key Laboratory of Neuropathic Pain Mechanism at Spinal Cord Level, Guangzhou, 510630 China
| | - HuaPing Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Ming Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Hongxin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| |
Collapse
|
7
|
Green EA, Hamaker NK, Lee KH. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol 2023; 23:7. [PMID: 36882740 PMCID: PMC9990576 DOI: 10.1186/s12896-023-00777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Nathaniel K Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA.
| |
Collapse
|
8
|
Khan SU, Khan MU, Khan MI, Kalsoom F, Zahra A. Current Landscape and Emerging Opportunities of Gene Therapy with Non-viral Episomal Vectors. Curr Gene Ther 2023; 23:135-147. [PMID: 36200188 DOI: 10.2174/1566523222666221004100858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027,People's Republic of China
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Fadia Kalsoom
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Aqeela Zahra
- Department of Family and Community Medicine. College of Medicine, University of Ha'il, Ha'il 81451, Saudi Arabia
| |
Collapse
|
9
|
Chang A, Ling J, Ye H, Zhao H, Zhuo X. Enhancement of nanoparticle-mediated double suicide gene expression driven by 'E9-hTERT promoter' switch in dedifferentiated thyroid cancer cells. Bioengineered 2021; 12:6572-6578. [PMID: 34506254 PMCID: PMC8806866 DOI: 10.1080/21655979.2021.1974648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Differentiated thyroid cancer (DTC), such as papillary thyroid cancer, has a good prognosis after routine treatment. However, in the course of treatment, 5% to 20% of cases may dedifferentiate and can be transformed into dedifferentiated DTC (deDTC) or anaplastic thyroid cancer, leading to treatment failure. To date, several drugs have been used effectively for dedifferentiated thyroid cancer, whereas gene therapy may be a potential method. Literature reported that double suicide genes driven by human telomerase reverse transcriptase promoter (hTERTp) can specifically express in cancer cells and kill them. However, the weak activity of hTERTp limits its further research. To overcome this weakness, we constructed a novel chitosan nanocarrier containing double suicide genes driven by a ‘gene switch’ (a cascade of radiation enhancer E9 and a hTERTp). The vector was labeled with iodine-131 (131I). On one hand, E9 can significantly enhance the activity of hTERTp under the weak radiation of 131I, thereby increasing the expression of double suicide genes in deDTC cells. On the other hand, 131I also plays a certain killing role when it enters host cells. The proposed nanocarrier has good specificity for deDTC cells and thus deserves further study.
Collapse
Affiliation(s)
- Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Oncology, Chongqing Institute of Traditional Chinese Medicine, Chongqing, China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|
11
|
Chen P, Chen M, Menon A, Hussain AI, Carey E, Lee C, Horwitz J, O'Connell S, Cooper JW, Schwartz R, Gowetski DB. Development of a High Yielding Bioprocess for a Pre-fusion RSV Subunit Vaccine. J Biotechnol 2020; 325:261-270. [PMID: 33068697 DOI: 10.1016/j.jbiotec.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 02/03/2023]
Abstract
Respiratory syncytial virus (RSV) is a highly contagious virus causing severe infection in infants and the elderly. Various approaches are being used to develop an effective RSV vaccine. The RSV fusion (F) subunit, particularly the cleaved trimeric pre-fusion F, is one of the most promising vaccine candidates under development. The pre-fusion conformation elicits the majority of neutralizing antibodies during natural infection. However, this pre-fusion conformation is metastable and prone to conversion to a post-fusion conformation, thus hindering the potential of this construct as a vaccine antigen. The Vaccine Research Center (VRC) at the National Institutes of Health (NIH) designed a structurally stabilized pre-fusion F glycoprotein, DS-Cav1, that showed high immunogenicity and induced a neutralizing response in animal studies. To advance this candidate to clinical manufacturing, a production process that maintained product quality (i.e. a cleaved trimer with pre-fusion conformation) and delivered high protein expression levels was required. This report describes the development of the vaccine candidate including vector design and cell culture process development to meet these challenges. Co-transfection of individual plasmids to express DS-Cav1 and furin (for DS-Cav1 cleavage and activation) demonstrated a superior protein product expression and pre-fusion conformation compared to co-expression with a double gene vector. A top clone was selected based on these measurements. Protein expression levels were further increased by seeding density optimization and a biphasic hypothermia temperature downshift. The combined efforts led to a high-yield fed-batch production of approximately 1,500 mg/L (or up to 15,000 doses per liter) at harvest. The process was scaled up and demonstrated to be reproducible at 50 L-scale for toxicity and Phase I clinical trial use. Preliminary phase I data indicate the pre-fusion antigen has a promising efficacy (Crank et al., 2019).
Collapse
Affiliation(s)
- Peifeng Chen
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| | - Mingzhong Chen
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Amritha Menon
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Althaf I Hussain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Elizabeth Carey
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Christopher Lee
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Joe Horwitz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Sarah O'Connell
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Johnathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Richard Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Daniel B Gowetski
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| |
Collapse
|