1
|
Borowicz KK, Jach ME. Astragalus Membranaceus-Can It Delay Cellular Aging? Nutrients 2025; 17:1299. [PMID: 40284164 PMCID: PMC12029721 DOI: 10.3390/nu17081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Astragalus membranaceus, a plant that has been utilized in traditional Chinese medicine for centuries, is widely regarded as one of the most valuable herbs in this medicinal tradition. It is commonly referred to as the "yellow leader", a designation that stems from the yellow hue of its most significant organ, the root, and its adaptogenic properties. The plant Astragalus is renowned for its abundance of active components, including polysaccharides, flavonoids, saponins, and an array of trace elements. It has been demonstrated that the administration of Astragalus can prevent cellular aging, owing to its diverse range of actions that provide protection to the body from both external and internal factors. The antioxidant, immunomodulatory, anti-inflammatory, and regenerative properties of this plant contribute to the maintenance of good skin condition, preventing atrophy of subcutaneous tissue and degeneration of facial bones. Systemic actions encompass the maintenance of function and protection of the cardiovascular, nervous, respiratory, digestive, excretory, immune, and endocrine systems. This article reviews the composition of Astragalus membranaceus and the beneficial effects of its root extract and its active substances on the whole body, with a particular focus on the anti-aging effects on the skin.
Collapse
Affiliation(s)
- Kinga K. Borowicz
- Independent Experimental Neuropathophysiology Unit, Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| | - Monika E. Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Xiang S, Luo Y, Liu W, Tang C, Zhu T, Tian L, Zheng T, Ling L, Jia M, Li X, Cao Y. Calycosin alleviates ovariectomy-induced osteoporosis by promoting BMSCs autophagy via the PI3K/Akt/mTOR pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04009-x. [PMID: 40087184 DOI: 10.1007/s00210-025-04009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Calycosin, the main extract from the traditional Chinese medicine (TCM) Astragalus membranaceus, has demonstrated anti-osteoporotic properties in ovariectomized (OVX) mice. However, the specific pathways through which it prevents osteoporosis remain unexplored. This study aimed to investigate the pathways by which calycosin promotes autophagy in bone marrow mesenchymal stem cells (BMSCs) and alleviates ovariectomy-induced osteoporosis. Mice were divided into three groups: sham, OVX, and OVX + calycosin. Following a 12-week intervention period, assessments included analysis of bone microstructure, serum concentrations of LC3II and ALP, and evaluation of Trap expression in femoral tissue. Immunohistochemical staining was used to assess the expression levels of PI3K, Runx2, and Beclin-1 in bone tissue. Additionally, levels of Runx2, ALP, p-PI3K, PI3K, mTOR, p-mTOR, Beclin-1, and ULK1 were analyzed. Osteogenic differentiation of BMSCs was evaluated using ALP and Alizarin red staining. OVX significantly impaired BMSCs osteogenic differentiation, resulting in bone loss. In contrast, calycosin increased bone mass, promoted osteogenesis, and reduced cancellous bone loss. Parameters, such as BMD, BV/TV, Tb.N, and Tb.Th, were significantly higher in the OVX + calycosin group compared to the OVX group. Additionally, Tb.Sp was notably reduced in the OVX + calycosin group. Calycosin also upregulated levels of Runx2, ALP, p-PI3K, p-mTOR, ULK1, and Beclin-1. In cellular studies, calycosin promoted BMSCs osteogenesis under OVX conditions; however, this effect was inhibited by LY294002. Calycosin effectively combats bone loss and improves bone structure. Its mechanism likely involves the promotion of autophagy in osteoblasts, thereby stimulating BMSC osteogenic differentiation. This effect may be mediated through the PI3K/Akt/mTOR pathway. These findings suggest that calycosin has the potential to serve as an alternative therapy for treating osteoporosis.
Collapse
Affiliation(s)
- Shouyu Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, People's Republic of China
| | - Yinji Luo
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, People's Republic of China
| | - Wei Liu
- Department of Orthopedics, Guilin People's Hospital, Guilin, China
| | - Cheng Tang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, People's Republic of China
| | - Tianyu Zhu
- Department of Burns and Plastic Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Lai Tian
- The Zhushan People's Hospital, ShiYan, China
| | - Tiansheng Zheng
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Long Ling
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, People's Republic of China
| | - Mingyang Jia
- Operating Room, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Yanming Cao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, People's Republic of China.
| |
Collapse
|
3
|
Li M, Niu Y, Zhang T, Yang H, Tian L, Zhou S, Wumiti T, Sun J, Zhou Q, Zuo X, Gao T, Li J, Ma Y, Guo Y, Wang L. Wen-Shen-Tong-Luo-Zhi-Tong-Decoction inhibits bone loss in senile osteoporosis model mice by promoting testosterone production. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119033. [PMID: 39515680 DOI: 10.1016/j.jep.2024.119033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wen-Shen-Tong-Luo-Zhi-Tong-Decoction (WSTLZTD) is a traditional Chinese medicine formula, and its effectiveness in the treatment of senile osteoporosis(SOP) has been confirmed by clinical studies. However, the underlying mechanism of WSTLZTD in SOP is unclear. AIM OF THE STUDY This study aimed to clarify the unique effects of Wen-Shen-Tong-Luo-Zhi-Tong-Decoction(WSTLZTD) on senile osteoporosis(SOP) and its underlying mechanisms. MATERIALS AND METHODS SAMP6 mice were treated with varying doses of WSTLZTD as the SOP model. Bone loss was evaluated by micro-CT, HE, OCN immunohistochemistry staining, and serum Trap level. Metabolomics studies serum metabolites. ELISA, qPCR, and immunofluorescence were utilized to measure testosterone levels in mouse testis. The effect of testosterone on the mitochondrial energy metabolism of BMSCs was investigated using ROS generation, NAD+/NADH ratio, and WB. Cell senescence was examined by β-galactosidase staining and WB. The effect of TM3 cell conditioned media (CM) on mitochondrial energy metabolism and BMSCs osteogenesis were studied using ALP, ARS, ROS staining, the NAD+/NADH, and WB. RESULTS WSTLZTD effectively reversed bone loss in SOP model mice, resulting in better bone microstructure, increased BMD, BV/TV, Tb.n, Tb.Th and, and decreased Tb.Sp. WSTLZTD can increase OCN expression and decrease Trap levels. Network pharmacology data suggest that WSTLZTD regulates steroid hormone production, cellular senescence, inflammation. Metabolomic data indicate that WSTLZTD increases testosterone production or metabolism-related metabolites. WSTLZTD enhanced testosterone production and the mRNA expression of genes involved in testosterone synthesis. Testosterone inhibited the decline in osteogenic differentiation and mitochondrial energy metabolism of senescent BMSCs. The decreased testosterone production in senescent TM3 is reversed by WSTLZTD. CM derived from WSTLZTD-treated TM3 cells promoted osteogenic differentiation and mitochondrial energy metabolism of BMSCs. CONCLUSIONS By increasing testosterone production, WSTLZTD may promote mitochondrial energy metabolism and osteogenic differentiation of senescent BMSCs, thereby exerting its anti-SOP effect.
Collapse
Affiliation(s)
- Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Haomiao Yang
- NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China
| | - Linkun Tian
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qinfeng Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianle Gao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Jiale Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 224000, Yancheng, Jiangsu Province, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
4
|
Wang HP, Lin ZZ, Zhao C, Yin Q, Jia J. Screening of potential α-glucosidase inhibitors from astragalus membranaceus by affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS method. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1348-1357. [PMID: 38869219 DOI: 10.1080/10286020.2024.2366007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Astragalus membranaceus is a traditional Chinese medicine with multiple pharmacological activities. Modern pharmacological research has found that Astragalus membranaceus extract has an inhibitory effect on α-glucosidase, however, which component can inhibit the activity of α-glucosidase and its degree of inhibition are unknown. To address this issue, this study used affinity ultrafiltration screening combined with UPLC-ESI-Orbitrap-MS technology to screen α-glucosidase inhibitors in Astragalus membranaceus. Using affinity ultrafiltration technology, we obtained the active components, and using UPLC-ESI-Orbitrap-MS technology, we quickly analyzed and identified them. As a result, a total of 8 ingredients were selected as α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Hong-Ping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| | - Zhao-Zhou Lin
- Beijing Zhongyan Tongrentang Pharmaceutical R & D Co., Ltd., National Engineering Research Center for R&D of TCM Multi-ingredient Drugs, Beijing 100000, China
| | - Chen Zhao
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| | - Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| | - Jun Jia
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| |
Collapse
|
5
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
6
|
Wang L, Zhang Q, Wang J, Lu H, Zeng W, Zhang T. Vitamin D3 regulates NSUN2 expression and inhibits melanoma cell proliferation and migration. Mol Divers 2024; 28:2863-2874. [PMID: 37688740 DOI: 10.1007/s11030-023-10720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
The activated form of vitamin D3 [1,25-dihydroxyvitamin D3; 1,25(OH)2D3] is important for various physiological processes, such as bone mineralization and calcium metabolism, and plays an anticancer role in numerous cancers as well. Its role in melanoma cells has yet to be proven. NOP2/Sun RNA methyltransferase 2 (NSUN2) is a typical RNA methyltransferase and is highly expressed in a variety of cancer cells. However, the molecular mechanisms underlying the role of 1,25(OH)2D3 and NSUN2 in melanoma cells remain largely unknown. The current study showed that 1,25(OH)2D3 could significantly and specifically inhibit the proliferation and migration of melanoma B16 cells. 1,25(OH)2D3 enhances vitamin D receptor expression while simultaneously reducing NSUN2 expression in melanoma cells. Subsequently, knockdown of NSUN2 suppressed B16 cell proliferation and migration. RNA-Seq results illuminated that DNA replication, cell proliferation and cell cycle pathways were enriched, and genes promoting these pathways were reduced after knocking down Nsun2. Dual-luciferase reporter assays showed that 1,25(OH)2D3 downregulated reporter gene expression was controlled by the Nsun2 promoter. The results suggest that 1,25(OH)2D3 binds to the vitamin D response element located upstream of the Nsun2 promoter to downregulate Nsun2 transcription activity and then affects the gene expression pattern related to cell proliferation and the cell cycle, thereby restraining B16 cell proliferation and migration.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Qiang Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinping Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, China.
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
7
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Cao N, Shou Z, Xiao Y, Liu P. Efficacy and Possible Mechanisms of Astragali Radix and its Ingredients in Animal Models of Osteoporosis: A Preclinical Review and Metaanalysis. Curr Drug Targets 2024; 25:135-148. [PMID: 38213165 DOI: 10.2174/0113894501275292231220062838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.
Collapse
Affiliation(s)
- Ning Cao
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Zhangxuan Shou
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yi Xiao
- HD Biosciences (A WuXi company) Pharma Tech, Shanghai 201201, China
| | - Puqing Liu
- Pharmacy Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
9
|
Tian Z, Li Y, Wang X, Cui K, Guo J, Wang M, Hao Y, Zhang F. Exploring the mechanism of Astragali radix for promoting osteogenic differentiation based on network pharmacology, molecular docking, and experimental validation. Chem Biol Drug Des 2023; 102:1489-1505. [PMID: 37690812 DOI: 10.1111/cbdd.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
The present study used network pharmacology and molecular docking to predict the active ingredients and mechanisms of action of Astragalus radix (AR) to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs), and cell experiments were conducted for verification. First, network pharmacology was used to predict the effective components, targets, and mechanisms of action of AR to promote osteogenic differentiation. The effective components and corresponding target proteins of AR, and the target proteins of osteogenic differentiation were collected through the database. The intersection targets of the two were used for the construction and analysis of a protein-protein interaction (PPI) network. Gene Oncology (GO) and Kyoto Encyclopedia of Genes, and Genomes (KEGG) enrichment analyses were conducted. Next, molecular docking technology was carried out to verify the interaction between the active ingredient and the target protein, and to select the appropriate effective active ingredient. Finally, the results of network pharmacology analysis were verified by in vitro experiments. A total of 95 potential targets were retrieved by searching the intersection of AR and osteogenic differentiation targets. PPI network analysis indicated that RAC-α-serine-threonine-protein kinase (Akt1) was considered to be the most reliable target for AR to regulate osteogenic differentiation. GO enrichment analysis included 21 biological processes, 21 cellular components and 100 molecular functions. KEGG enrichment analysis indicated that the class I phosphatidylinositol-3 kinase (PI3K)-serine-threonine kinase (Akt) signaling pathway may play an important role in promoting osteogenic differentiation. The results of molecular docking showed that quercetin's performance was improved compared with that of kaempferol. In vitro experiments showed that quercetin promoted the expression of osteogenic marker proteins (including collagen I, Runt-related transcription factor 2 and osteopontin) in BMSCs and activated the PI3K/Akt signaling pathway. AR acted on Akt1 targets through its main active component quercetin, and promoted the osteogenic differentiation of BM-MSCs by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zenghui Tian
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingying Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoying Wang
- Teaching and Research Department of Internal Medicine, Jinan Vocational College of Nursing, Jinan, China
| | - Kaiying Cui
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxing Guo
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingliang Wang
- Department of Orthopedics, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Yanke Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Farong Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Fan W, Jiang ZZ, Wan SR. Based on network pharmacology and molecular docking to explore the molecular mechanism of Ginseng and Astragalus decoction against postmenopausal osteoporosis. Medicine (Baltimore) 2023; 102:e35887. [PMID: 37986389 PMCID: PMC10659622 DOI: 10.1097/md.0000000000035887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Traditional Chinese medicine suggests that Ginseng and Astragalus Decoction (GAD) may effectively treat postmenopausal osteoporosis (PMO). However, the exact mechanism of action for GAD remains unclear. This study aims to utilize network pharmacology and molecular docking technology to explore the potential mechanism of GAD in treating PMO. The main chemical components of GAD were identified by consulting literature and traditional Chinese medicine systems pharmacology database. GeneCards and online mendelian inheritance in man were used to identify PMO disease targets, and Cytoscape 3.8.2 software was used to construct a herb-disease-gene-target network. The intersection of drug targets and disease targets was introduced into the search tool for the retrieval of interacting genes platform to construct a protein-protein interaction network. Additionally, we further conducted gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses, followed by molecular docking between active ingredients and core protein targets. We have identified 59 potential targets related to the treatment of PMO by GAD, along with 33 effective components. Quercetin and kaempferol are the compounds with higher degree. In the protein-protein interaction network, IL6, AKT1, and IL1B are proteins with high degree. The enrichment analysis of gene ontology and KEEG revealed that biological processes involved in treating PMO with GAD mainly include response to hormones, positive regulation of phosphorylation, and regulation of protein homodimerization activity. The signal pathways primarily include Pathways in cancer, PI3K-Akt signaling pathway, and AGE-RAGE signaling pathway. Molecular docking results indicate that kaempferol and quercetin have a high affinity for IL6, AKT1, and IL1B. Our research predicts that IL6, AKT1, and IL1B are highly likely to be potential targets for treating PMO with GAD. PI3K/AKT pathway and AGE-ARGE pathway may play an important role in PMO.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China
| | - Zong-Zhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Jiang J, Liu Q, Mao Y, Wang N, Lin W, Li L, Liang J, Chen G, Huang H, Wen J. Klotho reduces the risk of osteoporosis in postmenopausal women: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). BMC Endocr Disord 2023; 23:151. [PMID: 37452417 PMCID: PMC10347835 DOI: 10.1186/s12902-023-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is one of the diseases that endanger the health of the elderly population. Klotho protein is a hormone with anti-aging effects. A few studies have discussed the relationship between Klotho and OP. However, there is still a lack of research on larger populations. This study aims to evaluate the association between OP and Klotho in American postmenopausal women. METHODS This is a retrospective study. We searched the National Health and Nutrition Examination Survey (NHANES) database and collected data of 3 survey cycles, finally involving 871 postmenopausal women over 50 years old in the present study. All participants took dual-energy X-ray absorptiometry examination and serum Klotho testing at the time of investigation. After adjusting the possible confounding variables, a multivariate regression model was employed to estimate the relationship between OP and Klotho proteins. Besides, the P for trend and restricted cubic spline (RCS) were applied to examine the threshold effect and calculate the inflection point. RESULTS Factors influencing the occurrence of OP included age, ethnicity, body mass index and Klotho levels. Multivariate regression analysis indicated that the serum Klotho concentration was lower in OP patients than that in participants without OP (OR[log2Klotho] = 0.568, P = 0.027). The C-index of the prediction model built was 0.765, indicating good prediction performance. After adjusting the above-mentioned four variables, P values for trend showed significant differences between groups. RCSs revealed that when the Klotho concentration reached 824.09 pg/ml, the risk of OP decreased drastically. CONCLUSION Based on the analysis of the data collected from the NHANES database, we propose a correlation between Klotho and postmenopausal OP. A higher serum Klotho level is related to a lower incidence of OP. The findings of the present study can provide guidance for research on diagnosis and risk assessment of OP.
Collapse
Affiliation(s)
- Jialin Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Yaqian Mao
- Department of Internal Medicine, Fujian Provincial Hospital Jinshan Branch, Fuzhou, China
| | - Nengyin Wang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
12
|
Cheng J, Zhai J, Zhong W, Zhao J, Zhou L, Wang B. Lactobacillus rhamnosus GG Promotes Intestinal Vitamin D Absorption by Upregulating Vitamin D Transporters in Senile Osteoporosis. Calcif Tissue Int 2022; 111:162-170. [PMID: 35616697 DOI: 10.1007/s00223-022-00975-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Intestinal absorption of vitamin D is an important way to improve the vitamin D level in senile osteoporosis (SOP). There is a link between oral probiotics and vitamin D, but the mechanism is still unclear. We aimed to evaluate whether Lactobacillus rhamnosus GG culture supernatant (LCS) can affect cholecalciferol absorption, transport, and hydroxylation in SOP, and explore underlying mechanisms. In the study, specific-pathogen-free SAMP6 mice were randomly divided into an experimental group administered undiluted LCS and a control group administered normal drinking water. Furthermore, levels of cholecalciferol absorption were compared between Caco-2 cells cultured with varying concentrations of cholecalciferol and stimulated with LCS or de Man, Rogosa, and Sharpe (MRS) broth (control). Similarly, LCS-stimulated HepG2 cells were compared with MRS-stimulated HepG2 cells. Finally, protein levels of VD transporters in small intestine tissues and Caco-2 cells, as well as vitamin D-binding protein and 25-hydroxylase in liver tissues and HepG2 cells, were detected by western blot. The results showed that plasma concentrations of cholecalciferol and 25OHD3 were higher in mice of the LCS group compared with the control group, and these values were positively correlated. With the addition of LCS, cholecalciferol uptake was increased with 0.5 μM or 10 μM cholecalciferol in the medium. Protein levels of CD36 and NPC1L1 were higher in the LCS group compared with the control group, while SR-BI protein was decreased, both in vitro and in vivo. In conclusion, LCS can promotes intestinal absorption cholecalciferol by affecting protein levels of VD transporters and improves 25OHD3 levels in SOP.
Collapse
Affiliation(s)
- Jing Cheng
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthointernal, Tianjin Hospital, Tianjin, China
| | - Jianhua Zhai
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingwen Zhao
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bangmao Wang
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Chen H, Zhang N, Li C, Zhang H. Effects of Astragalus membranaceus on systemic lupus erythematosus in a mouse model of pregnancy. Immun Inflamm Dis 2022; 10:e624. [PMID: 35634952 PMCID: PMC9092001 DOI: 10.1002/iid3.624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study used astragalus membranaceus (AM) to treat systemic lupus erythematosus (SLE) model mice during pregnancy, aiming to explore the role of AM in Helper T cell 17 (Th17) differentiation and SLE during pregnancy. METHODS We used lipopolysaccharide to constructed the SLE mouse model. AM decoction given by intragastric administration lasted from the eighth week of the mouse age until the mouse was killed. We estimated the messenger RNA levels of IL-17a and Rorc, counted the Th17 cell number and examined the levels of cytokines including interleukin (IL)-12, tumor necrosis factor α, interferon gamma, IL-17A in mouse serum. Periodic acid-Schiff staining and renal glomerular/tubulointerstitial (TI) score were used to evaluate the progression of lupus nephritis (LN). RESULTS AM treatment improved the conception rate and increased the number and average weight of fetuses in SLE mice. It significantly decreased the urinary albumin/creatinine ratios and reduced the glomerular scores and TI scores in the pregnant SLE mice. AM gavage significantly decreased the weight of spleen, mesenteric lymph node, total splenocytes and T cells, and the expression of proinflammatory factors. Furthermore, AM treatment reduced the ratio of Th17 cells and the expression levels of RORγt and IL-17A. CONCLUSION AM significantly improved pregnancy outcomes and inhibited lupus nephritis during pregnancy in SLE mice.
Collapse
Affiliation(s)
- Hong‐Qing Chen
- Department of ObstetricsHengshui Fourth People's HospitalHengshuiHebeiChina
| | - Na Zhang
- Department of Clinical PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Cai‐Xia Li
- The Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Hong‐Xia Zhang
- Department of PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| |
Collapse
|
14
|
He G, Long T, Chen G. HOXA11-AS/miR-208-3p/ETS1 axis modulates osteogenic differentiation in bone marrow-derived mesenchymal stem cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Minhua T, Dashan W, Xinyan S, Xiao Y, Xiaojing L, Baodong Z. Preparation and characterization of scutellarin loaded on ultradeformable nano-liposomes scutellarin EDTMP (S-UNL-E) and in vitro study of its osteogenesis. Bioengineered 2022; 13:1013-1024. [PMID: 34974800 PMCID: PMC8805926 DOI: 10.1080/21655979.2021.2016095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was −28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 108) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Teng Minhua
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wang Dashan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Shi Xinyan
- Party and Administration Office, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Xiao
- School of Stomatology, Qingdao University, Qingdao, China.,Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xiaojing
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zhao Baodong
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Park KR, Park JE, Kim B, Kwon IK, Hong JT, Yun HM. Calycosin-7-O-β-Glucoside Isolated from Astragalus membranaceus Promotes Osteogenesis and Mineralization in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222111362. [PMID: 34768792 PMCID: PMC8583672 DOI: 10.3390/ijms222111362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-β-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3β, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Ji Eun Park
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Il Keun Kwon
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si 28160, Korea
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| |
Collapse
|