1
|
Yang Y, Wang Y, Wang Y, Ke T. Proteomic analysis by 4D label-free MS-PRM identified that Nptx1, Ptpmt1, Slc25a11, and Cpt1c are involved in diabetes-associated cognitive dysfunction. Int J Neurosci 2024; 134:1663-1673. [PMID: 38099467 DOI: 10.1080/00207454.2023.2292956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/11/2024]
Abstract
BACKGROUND Diabetes-associated cognitive dysfunction (DACD) is a chronic ailment that exerts a substantial influence on the overall well-being of individuals. The hippocampus assumes a pivotal role in the progression and sustenance of cognitive impairment. The identification of differentially expressed proteins (DEPs) in the hippocampus is crucial for understanding the mechanisms of DACD. METHODS A rat model of DACD was established by a high-fat diet combined with streptozotocin intraperitoneal injection. The Morris water maze (MWM), hematoxylin and eosin (H&E) staining, Nissl staining, and transmission electron microscope (TEM) were performed on the rats. The proteins expressed in the hippocampus were detected using 4D label-free quantitative proteomics. Four DEPs, namely Nptx1, Ptpmt1, Slc25a11, and Cpt1c, were validated using parallel reaction monitoring (PRM). RESULT Our study found that hippocampal lesions were present in the DACD rat models. There were 59 up-regulated and 98 down-regulated DEPs in the Model group compared to the Control group. We found that the levels of Nptx1, Ptpmt1, Slc25a11, and Cpt1c were elevated in the Model group, which are important for cell mitochondrial function. It should be noted that in our study, we only used PRM to validate the expression of these proteins. However, more evidence is needed to establish the relationship between these protein changes and DACD. CONCLUSION Our research results may provide further insight into the molecular pathology of hippocampal injury in DACD. In addition, further studies and clinical trials are required to confirm our findings and establish a more conclusive molecular mechanism for DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Yoon G, Kam MK, Koh YH, Jo C. Palmitoyl-L-carnitine induces tau phosphorylation and mitochondrial dysfunction in neuronal cells. PLoS One 2024; 19:e0313507. [PMID: 39536002 PMCID: PMC11560007 DOI: 10.1371/journal.pone.0313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and memory loss, involving mechanisms such as tau hyperphosphorylation and mitochondrial dysfunction. Increasing evidence suggests that age-related alterations in metabolite levels are crucial for the pathogenesis of AD. Here, we analyzed serum metabolites from mice of various ages (2, 4, 14, and 21 months old) using mass spectrometry. We identified palmitoyl-L-carnitine as a key metabolite with significantly increased levels in aged mice. In vitro experiments with SH-SY5Y neuronal cells demonstrated that palmitoyl-L-carnitine treatment enhanced tau phosphorylation, increased mitochondrial fission, and elevated intracellular calcium levels. Furthermore, the increased levels of tau phosphorylation were significantly reduced by the inhibition of GSK-3β, CDK5, and calpain, indicating that tau kinases activated by calcium overload are directly involved in the increase of tau phosphorylation. Considering that mitochondrial fission is related to mitochondrial dysfunction, we propose that the elevated level of serum palmitoyl-L-carnitine during aging contributes to AD pathology through these pathways. These findings highlight the significant role of lipid metabolism in neurodegeneration and offer potential therapeutic targets for age-related diseases, including AD.
Collapse
Affiliation(s)
- Gwangho Yoon
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Kyoung Kam
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
3
|
Greggi C, Montanaro M, Scioli MG, Puzzuoli M, Gino Grillo S, Scimeca M, Mauriello A, Orlandi A, Gasbarra E, Iundusi R, Pucci S, Tarantino U. Modulation of Carnitine Palmitoyl Transferase 1b Expression and Activity in Muscle Pathophysiology in Osteoarthritis and Osteoporosis. Biomolecules 2024; 14:1289. [PMID: 39456222 PMCID: PMC11505991 DOI: 10.3390/biom14101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In the pathophysiology of osteoarthritis and osteoporosis, articular cartilage and bone represent the target tissues, respectively, but muscle is also involved. Since many changes in energy metabolism occur in muscle with aging, the aim of the present work was to investigate the involvement of carnitine palmitoyl transferase 1b (Cpt1b) in the muscle pathophysiology of the two diseases. Healthy subjects (CTR, n = 5), osteoarthritic (OA, n = 10), and osteoporotic (OP, n = 10) patients were enrolled. Gene expression analysis conducted on muscle and myoblasts showed up-regulation of CPT1B in OA patients; this result was confirmed by immunohistochemical and immunofluorescence analyses and enzyme activity assay, which showed increased Cpt1b activity in OA muscle. In addition, CPT1B expression resulted down-regulated in cultured OP myoblasts. Given the potential involvement of Cpt1b in the modulation of oxidative stress, we investigated ROS levels, which were found to be lower in OA myoblasts, and gene expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (Nox4), which resulted up-regulated in OA cells. Finally, the immunofluorescence of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3) showed a decreased expression in OP myoblasts, with respect to CTR and OA. Contextually, through an ultrastructural analysis conducted by Transmission Electron Microscopy (TEM), the presence of aberrant mitochondria was observed in OP muscle. This study highlights the potential role of Cpt1b in the regulation of muscle homeostasis in both osteoarthritis and osteoporosis, allowing for the expansion of the current knowledge of what are the molecular biological pathways involved in the regulation of muscle physiology in both diseases.
Collapse
Affiliation(s)
- Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Martina Puzzuoli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Sonia Gino Grillo
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (A.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (A.M.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
- Faculty of Medicine and Surgery, University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania
| | - Elena Gasbarra
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Riccardo Iundusi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
| | - Sabina Pucci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.P.); (A.O.); (S.P.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.G.); (E.G.); (R.I.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy;
- Faculty of Medicine and Surgery, University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
4
|
Liu L, Tang L, Wang Y, Liu S, Zhang Y. Expression of ITPR2 regulated by lncRNA-NONMMUT020270.2 in LPS-stimulated HT22 cells. Heliyon 2024; 10:e33491. [PMID: 39040287 PMCID: PMC11260991 DOI: 10.1016/j.heliyon.2024.e33491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background Long non-coding RNA (lncRNA)-NONMMUT020270.2 is downregulated and co-expressed with inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) in the hippocampus of Alzheimer's disease (AD) mice. However, whether the expression of ITPR2 was regulated by lncRNA-NONMMUT020270.2 remains unclear. we aimed to investigate regulating relationship of lncRNA-NONMMUT020270.2 and ITPR2. Methods HT22 cells were firstly transfected with the pcDNA3.1-lncRNA-NONMMUT020270.2 overexpression plasmid or with the lncRNA-NONMMUT020270.2 smart silencer, and then were stimulated with lipopolysaccharide (LPS) for 24h. The mRNA expression levels of lncRNA-NONMMUT020270.2 and ITPR2 were measured by reverse transcription-quantitative PCR. Cell viability was assessed using a Cell Counting Kit 8 assay. The expression of Aβ1-42 was detected by ELISA. The expression levels of p-tau, caspase-1, and inositol trisphosphate receptor (IP3R) proteins were detected by western-blotting. Nuclear morphological changes were detected by Hoechst staining. Flow cytometry and Fluo-3/AM were carried out to determine cell apoptosis and the intracellular Ca2+. Results LPS significantly decreased cell viability, and ITPR2 mRNA and IP3R protein expression levels. While it markedly enhanced the expression levels of p-tau and Aβ1-42, cell apoptosis rate, as well as intracellular Ca2+ concentration (P < 0.05). In addition, lncRNA-NONMMUT020270.2 overexpression significantly increased the expressions levels of ITPR2 mRNA and IP3R protein (P < 0.05), and inhibited expression of p-tau and Aβ1-42, cell apoptosis rate, and reduced intracellular Ca2+ concentration (P < 0.05). By contrast, lncRNA-NONMMUT020270.2 silencing notably downregulated expressions levels of ITPR2 mRNA and IP3R protein (P < 0.05), and elevated expression levels of p-tau and Aβ1-42, cell apoptosis rate, and intracellular Ca2+ concentration (P < 0.05). Conclusion lncRNA-NONMMUT020270.2 was positively correlated with ITPR2 expression in LPS-induced cell. Downregulating the lncRNA-NONMMUT020270.2 and ITPR2 may promote cell apoptosis and increase intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Lan Liu
- Medical College, Tibet University, Lhasa, Tibet, 850000, People's Republic of China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Liang Tang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yan Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yongcang Zhang
- Medical College, Tibet University, Lhasa, Tibet, 850000, People's Republic of China
| |
Collapse
|
5
|
Zhao Y, Chen Y, Liu Z, Zhou L, Huang J, Luo X, Luo Y, Li J, Lin Y, Lai J, Liu J. TXNIP knockdown protects rats against bupivacaine-induced spinal neurotoxicity via the inhibition of oxidative stress and apoptosis. Free Radic Biol Med 2024; 219:1-16. [PMID: 38614227 DOI: 10.1016/j.freeradbiomed.2024.04.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China; Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ziru Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lei Zhou
- Department of Anesthesiology, Meishan People's Hospital, No. 288 South Fourth Section of Dongpo Avenue, 620020, Sichuan, China
| | - Jiao Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yunpeng Luo
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 557300, Guizhou, China
| | - Jia Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China; Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yunan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
7
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
8
|
Li K, Wang Y, Ni H. Hederagenin Upregulates PTPN1 Expression in Aβ-Stimulated Neuronal Cells, Exerting Anti-Oxidative Stress and Anti-Apoptotic Activities. J Mol Neurosci 2023; 73:932-945. [PMID: 37882913 DOI: 10.1007/s12031-023-02160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Alzheimer's disease (AD) is a prevalently neurodegenerative disease characterized by neuronal damage which is associated with amyloid-β (Aβ) accumulation. Hederagenin is a triterpenoid saponin, exerting anti-apoptotic, anti-oxidative, anti-inflammatory, anti-tumoral, and neuroprotective activities. However, its role in AD progression is still obscure. The aim of this study was to explore the influences of hederagenin on Aβ-caused neuronal injury in vitro. Neuronal cells were treated with Aβ25-35 (Aβ) to establish a cellular model of AD. Cell viability was assessed using cell counting kit-8 (CCK-8). Oxidative stress was evaluated by detecting reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity. Apoptosis was investigated using TUNEL staining and caspase-3 activity assays. Protein tyrosine phosphatase nonreceptor type 1 (PTPN1) was screened by bioinformatics analysis. Protein levels of PTPN1 and protein kinase B (Akt) were measured by western blotting. Hederagenin (2.5, 5, and 10 μM) alone did not affect viability of neuronal cells, but relieved Aβ-induced viability reduction. Hederagenin mitigated Aβ-induced increase in ROS accumulation and decrease in SOD activity. Hederagenin attenuated Aβ-induced increase in apoptotic rate and caspase-3 activity. PTPN1 was screened as a target of hederagenin against AD by bioinformatics analysis. Hederagenin treatment resisted Aβ-induced decrease in PTPN1 mRNA and protein levels in neuronal cells. PTPN1 silencing attenuated the suppressive functions of hederagenin in Aβ-stimulated oxidative stress and apoptosis. Hederagenin mitigated Aβ-induced Akt signaling inactivation by upregulating PTPN1 expression. In conclusion, hederagenin attenuates oxidative stress and apoptosis in neuronal cells stimulated with Aβ by promoting PTPN1/Akt signaling activation.
Collapse
Affiliation(s)
- Ke Li
- Department of Neurology, Nanyang First People's Hospital, Nanyang, 473004, China
| | - Yu Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473010, China
| | - Hongzao Ni
- Department of Neurosurgery, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, #62 Huaihai South Road, Huai'an, 223300, China.
| |
Collapse
|
9
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
10
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
11
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
12
|
Fadó R, Zagmutt S, Herrero L, Muley H, Rodríguez-Rodríguez R, Bi H, Serra D, Casals N. To be or not to be a fat burner, that is the question for cpt1c in cancer cells. Cell Death Dis 2023; 14:57. [PMID: 36693836 PMCID: PMC9873675 DOI: 10.1038/s41419-023-05599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, E-08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, E-08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Nikolaeva SD, Fock EM, Parnova RG. Lipopolysaccharide Stimulates Triglyceride Accumulation and Lipid Droplet Biogenesis in PC12 Cells: the Role of Carnitine Palmitoyltransferase 1 Down-Regulation and Suppression of Fatty Acid Oxidation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Liu H, Li Q, Zhang X, Shi Y, Li J. Effect of ginkgolide K on calcium channel activity in Alzheimer's disease. Exp Ther Med 2022; 23:426. [PMID: 35607377 PMCID: PMC9121205 DOI: 10.3892/etm.2022.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dementia with the key pathological hallmark of amyloid deposits that may induce mitochondrial dysfunction. Ginkgolide K (GK) has been proven to have neuroprotective effects. The present study sought to explore the neuroprotective effect of GK through regulation of the expression of mitochondrial Ca2+ uniporter (MCU) in the pathology of AD. SH-SY5Y cells were cultured and the expression of MCU was enhanced by transfection of MCU recombinant vectors or knockdown by MCU small interfering RNA. The cells were treated with GK and amyloid β (Aβ). Thereafter, the effects of GK, MCU expression and Aβ on viability and apoptosis of SH-SY5Y cells were examined via a WST-1 assay, flow cytometry and Caspase-3/8 activity assays, respectively. The effects of GK, MCU expression and Aβ on the calcium levels in mitochondria were also examined. The regulatory effect of GK on MCU expression was examined by reverse transcription-quantitative PCR and western blot analysis. Furthermore, APP/PS1 mice received supplementation with GK and their cognitive ability was then examined through water maze tests, while the expression of MCU was examined using immunohistochemistry. The results indicated that enhancing the expression of MCU inhibited cell viability and promoted apoptosis. GK protected cells from amyloid-induced cytotoxicity by promoting cell viability and preventing cell apoptosis. The neuroprotective effect of GK was abolished when MCU expression was knocked down. GK decreased the expression of MCU in vitro and downregulation of MCU decreased the calcium level in mitochondria. Treatment with GK in APP/PS1 mice downregulated the expression of MCU in the brains and alleviated cognitive impairment. In conclusion, the present study demonstrated that the administration of GK protected neurons by preventing apoptosis. Furthermore, the neuroprotective effect of GK in neuronal cells was indicated to be related to the inhibition of MCU expression. Therefore, administration of GK may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Hongbin Liu
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Qinyun Li
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Xiaodan Zhang
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yun Shi
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Jinyi Li
- Dolu Health Consultant Co., Ltd., Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
15
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|