1
|
Li X. The Predictive Value of BUB1 in the Prognosis of Oral Squamous Cell Carcinoma. Int Dent J 2025; 75:1165-1175. [PMID: 39147662 PMCID: PMC11976542 DOI: 10.1016/j.identj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumour in the oral cavity, and it is known for its poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1) may be related to cancer prognosis; however, the specific relationship between BUB1 and OSCC prognosis remains largely unexplored. METHODS The mRNA levels of BUB1 were analysed using data from the TCGA_OSCC and GSE23558 cohorts. OSCC samples from the TCGA_OSCC dataset were divided into low- and high-BUB1 expression groups based on the median BUB1 level. Furthermore, results of survival analysis, tumour mutation burden (TMB), gene set enrichment analysis (GSEA) pathways, and drug-sensitivity analysis were compared between the 2 groups. RESULTS Based on the data from the TCGA_OSCC and GSE23558 cohorts, BUB1 mRNA levels were significantly upregulated in OSCC tissues compared to healthy controls. Moreover, high expression of BUB1 may serve as an independent indicator of poor prognosis in OSCC. Additionally, patients with high BUB1 expression also exhibited increased levels of immune checkpoints and TMB, suggesting that patients with high BUB1 expression may benefit from immunotherapy. Mechanistically, transcription factors ZFP64, TCF3, and ZNF281 were found to potentially bind to the promoter region of BUB1, thereby regulating its gene expression. Furthermore, GSEA results showed that BUB1 expression was closely related to cell cycle and tumour-related pathways in OSCC. Drug-sensitivity analysis showed that patients with high BUB1 expression may be more sensitive to gemcitabine, paclitaxel, or imatinib. CONCLUSIONS Collectively, results demonstrated that high BUB1 levels may be related to a poor prognosis of OSCC, highlighting its potential as a novel prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, Tianjin, P.R. China.
| |
Collapse
|
2
|
Nema R, Kumar A. BUB1, miR-495-3p, and E2F1/E2F8 axis is associated with poor prognosis of breast cancer patients and infiltration of Th2 cells in the tumor microenvironment. Cancer Biomark 2025; 42:18758592241310109. [PMID: 40183319 DOI: 10.1177/18758592241310109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Breast cancer, the most common cancer in women, is characterized by cell cycle dysregulation and chromosome segregation errors, leading to mitotic catastrophe and genomic instability. Understanding these molecular mechanisms is crucial for better diagnosis and treatment. We used databases like TIMER 2.0, UALCAN, and Oncomine to determine the differential expression of Budding uninhibited by benzimidazole 1 (BUB1) in normal and pan-cancer tissues. we also used the Kaplan-Meier Plotter database to analyze gene expression associations with survival outcomes, bc-GenExMiner v5.0 to analyze BUB1 gene expression and histological subtypes, and ctcRbase and miR-TV to identify microRNAs associated with BUB1 expression in breast cancer. Our data show that BUB1 expression is overexpressed in breast cancer tumors, metastatic tissues, and circulating tumor cells, leading to shorter overall survival, disease-free survival, and relapse-free survival compared to low-expression patients. BUB1 expression is strongly correlated with E2F1/E2F8 expression, suggesting a potential regulatory relationship between these genes. The study revealed a negative correlation between target miRNA miR-495-3p and BUB1 expression in breast cancer tumors, indicating a potential regulatory relationship between these genes. The BUB1 expression was also strongly correlated with the infiltration of CD4+ T helper 2 (Th2) subtypes in the tumors, suggesting a need for further research.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| |
Collapse
|
3
|
Long D, Ding Y, Wang P, Wei L, Ma K. Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma. Int J Mol Sci 2025; 26:1066. [PMID: 39940833 PMCID: PMC11817228 DOI: 10.3390/ijms26031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protein phosphorylation is a dynamic and reversible modification involved in almost all cellular processes. Numerous investigations have shown that protein phosphorylation modification enzymes (PPMEs) that regulate protein phosphorylation play an important role in the occurrence and treatment of tumors. However, there is still a lack of effective insights into the value of PPMEs in the classification and treatment of patients with lung adenocarcinoma (LUAD). Here, four topological algorithms identified 15 hub PPMEs from a protein-protein interaction (PPI) network. This PPI network was constructed using 124 PPMEs significantly correlated with 35 cancer hallmark-related pathways. Our study illustrates that these hub PPMEs can affect the survival of patients with LUAD in the form of somatic mutation or expression perturbation. Consistency clustering based on hub PPMEs recognized two phosphorylation modification subtypes (namely cluster1 and cluster2) from LUAD. Compared with patients in cluster1, the survival prognosis of patients in cluster2 is worse. This disparity is probably attributed to the higher tumor mutation burden, the higher male proportion, and the more significant expression disturbance in patients in cluster2. Moreover, phosphorylation modification subtypes also have different characteristics in terms of immune activity, immune infiltration level, immunotherapy response, and drug sensitivity. We constructed a PSig scoring system by using a principal component analysis algorithm to estimate the level of phosphorylation modification in individual LUAD patients. Patients in the high and low PSig score groups demonstrated different characteristics in terms of survival rate, tumor mutation burden, somatic gene mutation rate, immune cell abundance, and sensitivity to immunotherapy and drug treatment. This work reveals that phosphorylation plays a non-negligible role in the tumor microenvironment and immunotherapy of LUAD. Evaluating the phosphorylation status of individual LUAD patients by the PSig score can contribute to enhancing our cognition of the tumor microenvironment and guiding the formulation of more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Deyu Long
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| |
Collapse
|
4
|
Zhang L, Wang S, Wang L. SKA1/2/3 is a prognostic and predictive biomarker in esophageal adenocarcinoma and squamous cell carcinoma. BMC Cancer 2024; 24:1480. [PMID: 39614199 PMCID: PMC11607974 DOI: 10.1186/s12885-024-13257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (ESCA) ranks among the most prevalent malignant tumors globally. Despite significant advancements in treatment options and improved patient outcomes, the 5-year survival rate remains unsatisfactory. The spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3) attached to the kinetochore (KT) in the metaphase of mitosis are implicated in the occurrence and development of various tumors. However, the expression patterns, diagnostic significance and prognostic implications of SKA1/2/3 in ESCA have not been comprehensively determined. METHODS TCGA, UALCAN, Kaplan-Meier Plotter, and TIMER databases were leveraged to dissect the expression patterns, prognostic implications and diagnostic value of SKA1/2/3 in ESCA patients, as well as to investigate the potential regulatory mechanism of SKA1/2/3 in the onset and progression of ESCA. RESULTS In ESCA, SKA1/2/3 exhibited substantial expression, with higher levels relating significantly with clinicopathological features and patient prognosis. Enrichment analysis of genes co-expressed with SKA1/2/3 highlighted their involvement in the cell cycle, DNA replication and p53 signaling pathway. Protein-protein interaction (PPI) analysis identified ten hub genes that were not only markedly upregulated but also portended a poor prognosis in ESCA. Additionally, immune infiltration assays uncovered a significant link between SKA1/2/3 expression and the immune cell infiltration within ESCA. Silencing of SKA1/2/3 significantly suppresses cell proliferation and migration, while concurrently promoting apoptosis in ESCA cells. CONCLUSIONS SKA1/2/3 may serve as promising biomarkers for the prognosis and diagnosis of ESCA, which holds promise as a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Liming Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China
- Department of Thoracic Surgery, Weifang Second People's Hospital, Weifang, Shandong Province, 261041, P. R. China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, Shandong Province, 261000, P. R. China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272029, China.
| |
Collapse
|
5
|
Abrahim NMM, Cavalcante RB, Pardini MIDMC, Rabenhorst SHB, Ferrasi AC. Evaluation of BUBR1, MCM2, and GMNN as oral cancer biomarkers. Eur J Cancer Prev 2024:00008469-990000000-00183. [PMID: 39480819 DOI: 10.1097/cej.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Oral cancer is a public health problem worldwide. Late diagnosis results in a low survival rate. However, this tumor can arise from oral precancerous lesions and identification of biomarkers in precursor lesions has the potential for early diagnosis, improving patient survival. In this context, proteins involved in the cell cycle control are potentially promising. This study aimed to evaluate the importance of immunohistochemical expression of BUBR1, MCM2, and GMNN as biomarkers of oral carcinogenesis considering different oral sites. Sixty-six samples of oral epithelial dysplasia (from 33 males and 33 females) and 63 samples of oral squamous cell carcinoma (from 44 males and 19 females) were subjected to immunohistochemistry to detect some human proteins. Ki67 expression was included as a marker of cell proliferation. Marker expression was quantified by manually counting at least 1000 cells, and the labeling index was used in all statistical analyses. GMNN, MCM2, BUBR1 (nuclear and cytoplasmic labeling), and Ki67 expression levels were higher in carcinomas than in dysplasia (P < 0.05). Cytoplasmic BUBR1 was a good marker of malignancy (AUC = 0.8525, P < 0.05), but Ki67 was not (AUC = 0.5943, P = 0.0713). GMNN, MCM2, BUBR1, and Ki67 had higher expression in carcinoma than in dysplasia, regardless of the site of the lesion. Cytoplasmic BUBR1 has the potential to be used as a marker of tumor progression.
Collapse
Affiliation(s)
- Naíza M M Abrahim
- Department of Internal Medicine, Sao Paulo State University, Botucatu
| | - Roberta B Cavalcante
- Department of Oral Pathology, School of Dentistry, University of Fortaleza (UNIFOR)
| | | | - Silvia H B Rabenhorst
- Pathology and Forensic Medicine Department, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
6
|
Thoidingjam S, Sriramulu S, Hassan O, Brown SL, Siddiqui F, Movsas B, Gadgeel S, Nyati S. BUB1 Inhibition Overcomes Radio- and Chemoradiation Resistance in Lung Cancer. Cancers (Basel) 2024; 16:3291. [PMID: 39409911 PMCID: PMC11475950 DOI: 10.3390/cancers16193291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Despite advances in targeted therapies and immunotherapies, traditional treatments like microtubule stabilizers (paclitaxel, docetaxel), DNA-intercalating platinum drugs (cisplatin), and radiation therapy remain essential for managing locally advanced and metastatic lung cancer. Identifying novel molecular targets could enhance the efficacy of these treatments. Hypothesis: We hypothesize that BUB1 (Ser/Thr kinase) is overexpressed in lung cancers and its inhibition will sensitize lung cancers to chemoradiation. Methods: BUB1 inhibitor (BAY1816032) was combined with cisplatin, paclitaxel, a PARP inhibitor olaparib, and radiation in cell proliferation and radiation-sensitization assays. Biochemical and molecular assays evaluated the impact on DNA damage signaling and cell death. Results: Immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) compared to normal tissues. In NSCLC, BUB1 overexpression correlated directly with the expression of TP53 mutations and poorer overall survival in NSCLC and SCLC patients. BAY1816032 synergistically sensitized lung cancer cell lines to paclitaxel and olaparib and enhanced cell killing by radiation in both NSCLC and SCLC. Molecular analysis indicated a shift towards pro-apoptotic and anti-proliferative states, evidenced by altered BAX, BCL2, PCNA, and Caspases-9 and -3 expressions. Conclusions: Elevated BUB1 expression is associated with poorer survival in lung cancer. Inhibiting BUB1 sensitizes NSCLC and SCLC to chemotherapies (cisplatin, paclitaxel), targeted therapy (olaparib), and radiation. Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.
Collapse
Affiliation(s)
| | | | - Oudai Hassan
- Department of Surgical Pathology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Shirish Gadgeel
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Division of Hematology/Oncology, Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Chen B, Zhang J, Shao C, Bian J, Kang R, Shang X. QIGTD: identifying critical genes in the evolution of lung adenocarcinoma with tensor decomposition. BioData Min 2024; 17:30. [PMID: 39232802 PMCID: PMC11376055 DOI: 10.1186/s13040-024-00386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Identifying critical genes is important for understanding the pathogenesis of complex diseases. Traditional studies typically comparing the change of biomecules between normal and disease samples or detecting important vertices from a single static biomolecular network, which often overlook the dynamic changes that occur between different disease stages. However, investigating temporal changes in biomolecular networks and identifying critical genes is critical for understanding the occurrence and development of diseases. METHODS A novel method called Quantifying Importance of Genes with Tensor Decomposition (QIGTD) was proposed in this study. It first constructs a time series network by integrating both the intra and inter temporal network information, which preserving connections between networks at adjacent stages according to the local similarities. A tensor is employed to describe the connections of this time series network, and a 3-order tensor decomposition method was proposed to capture both the topological information of each network snapshot and the time series characteristics of the whole network. QIGTD is also a learning-free and efficient method that can be applied to datasets with a small number of samples. RESULTS The effectiveness of QIGTD was evaluated using lung adenocarcinoma (LUAD) datasets and three state-of-the-art methods: T-degree, T-closeness, and T-betweenness were employed as benchmark methods. Numerical experimental results demonstrate that QIGTD outperforms these methods in terms of the indices of both precision and mAP. Notably, out of the top 50 genes, 29 have been verified to be highly related to LUAD according to the DisGeNET Database, and 36 are significantly enriched in LUAD related Gene Ontology (GO) terms, including nuclear division, mitotic nuclear division, chromosome segregation, organelle fission, and mitotic sister chromatid segregation. CONCLUSION In conclusion, QIGTD effectively captures the temporal changes in gene networks and identifies critical genes. It provides a valuable tool for studying temporal dynamics in biological networks and can aid in understanding the underlying mechanisms of diseases such as LUAD.
Collapse
Affiliation(s)
- Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China.
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710012, China.
| | - Jinlei Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Ci Shao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Jun Bian
- Department of General Surgery, Xi'an Children's Hosptial, Xi'an Jiaotong University Affiliated Children's Hosptial, Xi'an, 710003, China
| | - Ruiming Kang
- Rewise (Hangzhou) Information Technology Co., LTD, Hangzhou, 310000, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710012, China
| |
Collapse
|
8
|
Zhang H, Li Y, Lu H. Correlation of BUB1 and BUB1B with the development and prognosis of endometrial cancer. Sci Rep 2024; 14:17084. [PMID: 39048649 PMCID: PMC11269704 DOI: 10.1038/s41598-024-67528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to evaluate the expression and clinical significance of budding uninhibited by benzimidazole 1 (BUB1) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) in endometrial carcinoma (EC). BUB1 and BUBIB expressions were evaluated by bioinformatics. Protein expression, clinical features, prognosis and immune cell infiltration were explored in 20 EC tumors. siRNA was used to evaluate BUB1 and BUBIB function in EC cells. BUB1 and BUBIB were highly expressed in 26 cancers. BUB1 was associated with overall survival (OS) in eight cancers and disease-free survival in ten; BUB1B was associated with OS in nine cancers and DFS in eleven. BUB1 and BUBIB exhibited high frequencies of gene changes (mainly mutations, > 5%) in cancer. BUB1 was negatively correlated and BUB1B was positively correlated with cancer-associated fibroblasts and endothelial cell infiltration. BUB1 and BUBIB knockdown decreased migration and invasion in EC cells. High BUB1 expression correlated with tumor malignant phenotypes (P < 0.05). High BUB1 mRNA expression reduced OS (P = 0.00036) and recurrence-free survival (P = 0.0011). High BUB1B mRNA expression reduced OS (P = 0.0024). BUB1/BUB1B correlated with activated CD8 + T and CD4 + T cell infiltration. BUB1 and BUBIB are highly expressed and correlated with clinicopathological characteristics in EC. BUB1 and BUBIB are potential prognosis markers and immunotherapy targets.
Collapse
Affiliation(s)
- Huicong Zhang
- Clinical Medicinal College of Dali University, Dali City, 671000, Yunnan Province, China
| | - Yuhao Li
- West China School of Basic Medical Sciences and Forensic Medicine,, Sichuan University, 610041, Chengdu, China
| | - Huixia Lu
- Clinical Medicinal College of Dali University, Dali City, 671000, Yunnan Province, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
9
|
Pokaew N, Prajumwongs P, Vaeteewoottacharn K, Wongkham S, Pairojkul C, Sawanyawisuth K. Overexpression of BubR1 Mitotic Checkpoint Protein Predicts Short Survival and Influences the Progression of Cholangiocarcinoma. Biomedicines 2024; 12:1611. [PMID: 39062183 PMCID: PMC11274929 DOI: 10.3390/biomedicines12071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This study demonstrated that high expression of BubR1 correlated with cholangiocarcinogenesis in a hamster cholangiocarcinoma (CCA) model and was associated with shorter survival in patients with CCA. Co-expression of BubR1 and MPS1, which is a SAC-related protein, indicated a shorter survival rate in patients with CCA. Knockdown of BubR1 expression by specific siRNA (siBubR1) significantly decreased cell proliferation and colony formation while inducing apoptosis in CCA cell lines. In addition, suppression of BubR1 inhibited migration and invasion abilities via epithelial-mesenchymal transition (EMT). A combination of siBubR1 and chemotherapeutic drugs showed synergistic effects in CCA cell lines. Taken together, this finding suggested that BubR1 had oncogenic functions, which influenced CCA progression. Suppression of BubR1 might be an alternative option for CCA treatment.
Collapse
Affiliation(s)
- Nongnapas Pokaew
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.P.); (P.P.); (K.V.); (S.W.)
| | - Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.P.); (P.P.); (K.V.); (S.W.)
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.P.); (P.P.); (K.V.); (S.W.)
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.P.); (P.P.); (K.V.); (S.W.)
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.P.); (P.P.); (K.V.); (S.W.)
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Ding J, Chen K, Wu X. Identification of lung adenocarcinoma subtypes based on mitochondrial energy metabolism-related genes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:568-586. [PMID: 38920027 DOI: 10.1080/15257770.2024.2369093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/21/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Identifying subtypes of lung adenocarcinoma (LUAD) patients based on mitochondrial energy metabolism and immunotherapy sensitivity is essential for precision cancer treatment. METHODS LUAD subtypes were identified using unsupervised consensus clustering, and results were subjected to immune and tumor mutation analyses. DEGs between subtypes were identified by differential analysis. Functional enrichment and PPI network analyses were conducted. Patients were classified into high and low expression groups based on the expression of the top 10 hub genes, and survival analysis was performed. Drugs sensitive to feature genes were screened based on the correlation between hub gene expression and drug IC50 value. qRT-PCR and western blot were used for gene expression detection, and CCK-8 and flow cytometry were for cell viability and apoptosis analysis. RESULTS Cluster-1 had significantly higher overall survival and a higher degree of immunoinfiltration and immunophenotypic score, but a lower TIDE score, DEPTH score, and TMB. Enrichment analysis showed that pathways and functions of DEGs between two clusters were mainly related to the interaction of receptor ligands with intracellular proteases. High expression of hub genes corresponded to lower patient survival rates. The predicted drugs with high sensitivity to feature genes were CDK1: Ribavirin (0.476), CCNB2: Hydroxyurea (0.474), Chelerythrine (0.470), and KIF11: Ribavirin (0.471). KIF11 and CCNB2 were highly expressed in LUAD cells and promoted cell viability and inhibited cell apoptosis. CONCLUSION This study identified two subtypes of LUAD, with cluster-1 being more suitable for immunotherapy. These results provided a reference for the development of precision immunotherapy for LUAD patients.
Collapse
Affiliation(s)
- Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Keng Chen
- Medical College of Hangzhou Normal University, Hangzhou, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
11
|
Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T, Wei R. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer 2024; 23:90. [PMID: 38711083 PMCID: PMC11071201 DOI: 10.1186/s12943-024-02008-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
12
|
He S, Xiao X, Ma C, Liu Y, Lin Q, Qian W, Cao C, Ren S, Chen J, Mi Y, Shen D. Identification and immunological characteristics of anoikis-associated molecular clusters in lung adenocarcinoma. Exp Cell Res 2024; 438:114037. [PMID: 38631545 DOI: 10.1016/j.yexcr.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Anoikis plays a crucial role in the progression, prognosis, and immune response of lung adenocarcinoma (LUAD). However, its specific impact on LUAD remains unclear. In this study, we investigated the intricate interplay of nesting apoptotic factors in LUAD. By analyzing nine key nesting apoptotic factors, we categorized LUAD patients into two distinct clusters. Further examination of immune cell profiles revealed that Cluster A exhibited greater infiltration of innate immune cells than did Cluster B. Additionally, we identified two genes closely associated with prognosis and developed a predictive model to differentiate patients based on molecular clusters. Our findings suggest that the loss of specific anoikis-related genes could significantly influence the prognosis, tumor microenvironment, and clinical features of LUAD patients. Furthermore, we validated the expression and functional roles of two pivotal prognostic genes, solute carrier family 2 member 1 (SLC2A1) and sphingosine kinase 1 (SPHK1), in regulating tumor cell viability, migration, apoptosis, and anoikis. These results offer valuable insights for future mechanistic investigations. In conclusion, this study provides new avenues for advancing our understanding of LUAD, improving prognostic assessments, and developing more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Chenglong Ma
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Ye Liu
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Qingfeng Lin
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Wenjun Qian
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Cheng Cao
- Department of Intensive Care Unit, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City, 214400, Jiangsu Province, China; Department of Brain Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin City, 214400, Jiangsu Province, China
| | - Shujuan Ren
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Jie Chen
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Yedong Mi
- Department of Thoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China.
| | - Dong Shen
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
13
|
Thoidingjam S, Sriramulu S, Hassan O, Brown SL, Siddiqui F, Movsas B, Gadgeel S, Nyati S. BUB1 inhibition sensitizes lung cancer cell lines to radiotherapy and chemoradiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590355. [PMID: 38712071 PMCID: PMC11071420 DOI: 10.1101/2024.04.19.590355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Lung cancer is a major public health concern, with high incidence and mortality. Despite advances in targeted therapy and immunotherapy, microtubule stabilizers (paclitaxel, docetaxel), DNA intercalating platinum drugs (cisplatin) and radiation therapy continue to play a critical role in the management of locally advanced and metastatic lung cancer. Novel molecular targets would provide opportunities for improving the efficacies of radiotherapy and chemotherapy. Hypothesis We hypothesize that BUB1 (Ser/Thr kinase) is over-expressed in lung cancers and that its inhibition will sensitize lung cancers to chemoradiation. Methods BUB1 inhibitor (BAY1816032) was combined with platinum (cisplatin), microtubule poison (paclitaxel), a PARP inhibitor (olaparib) and radiation in cell proliferation and radiation sensitization assays. Biochemical and molecular assays were used to evaluate their impact on DNA damage signaling and cell death mechanisms. Results BUB1 expression assessed by immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in NSCLC and SCLC compared to that of normal tissues. BUB1 overexpression in lung cancer tissues correlated directly with expression of TP53 mutations in non-small cell lung cancer (NSCLC). Elevated BUB1 levels correlated with poorer overall survival in NSCLC and small cell lung cancer (SCLC) patients. A BUB1 inhibitor (BAY1816032) synergistically sensitized lung cancer cell lines to paclitaxel and olaparib. Additionally, BAY1816032 enhanced cell killing by radiation in both NSCLC and SCLC. Molecular changes following BUB1 inhibition suggest a shift towards pro-apoptotic and anti-proliferative states, indicated by altered expression of BAX, BCL2, PCNA, and Caspases 9 and 3. Conclusion A direct correlation between BUB1 protein expression and overall survival was shown. BUB1 inhibition sensitized both NSCLC and SCLC to various chemotherapies (cisplatin, paclitaxel) and targeted therapy (PARPi). Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.
Collapse
|
14
|
Gao Y, Yu M, Liu Z, Liu Y, Kong Z, Zhu C, Qin X, Li Y, Tang L. m 6A demethylase ALKBH5 maintains stemness of intrahepatic cholangiocarcinoma by sustaining BUB1B expression and cell proliferation. Transl Oncol 2024; 41:101858. [PMID: 38242006 PMCID: PMC10825528 DOI: 10.1016/j.tranon.2023.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
ALKBH5 plays critical roles in various cellular processes via post-transcriptional regulation of oncogenes or tumor suppressors in an N6-methyladenosine (m6A)-dependent manner. However, its function in intrahepatic cholangiocarcinoma (ICC) remains unclear. In the present study, bioinformatic analyses of The Cancer Genome Atlas (TCGA) data were performed, and the association of ALKBH5 in predicting overall survival in patients with ICC was investigated. Then, the clinical data of patients from The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University (Changzhou, China) was used to reveal the overall survival of patients with ICC with different ALKBH5 expression levels by Kaplan-Meier survival analysis. Subsequently, in vitro and in vivo studies were conducted to explore and verify the downstream genes regulated by ALKBH5. The results from TCGA data demonstrated that ALKBH5 expression is elevated in ICC and that patients with high ALKBH5 expression exhibited poor survival compared with patients with low expression. In addition, in vitro assays demonstrated that ALKBH5 promoted cell viability and maintained the stemness of ICC cells, leading to ICC progression. The present study also demonstrated that BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is the downstream gene regulated by ALKBH5 and targeting BUB1B suppressed cell growth. The in vitro and vivo experiments revealed that ALKBH5 might function through BUB1B to maintain the stemness of ICC and that altering BUB1B may suppress ICC progression.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Hepatobiliary and pancreatic diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China; Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Miao Yu
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China
| | - Zengyuan Liu
- The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Yi Liu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Zhijun Kong
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xihu Qin
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yan Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China.
| | - Liming Tang
- Gastrointestinal Surgery and Central Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
15
|
Lu Y, Wang R, He S, Zhang Q, Wei J, Hu J, Ding Y. Downregulation of BUBR1 regulates the proliferation and cell cycle of breast cancer cells and increases the sensitivity of cells to cisplatin. In Vitro Cell Dev Biol Anim 2023; 59:778-789. [PMID: 38048028 DOI: 10.1007/s11626-023-00823-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Breast cancer (BC) is a significant tissue for women's health worldwide. The spindle assembly checkpoint protein family includes BUBR1 (Bub1-related kinase or MAD3/Bub1b). High expression of BUBR1 promotes cell cycle disorders, leading to cell carcinogenesis and cancer progression. However, the underlying molecular mechanism and the role of BUBR1 in BC progression are unclear. The published dataset was analyzed to evaluate the clinical relevance of BUBR1. BUBR1 was knocked down in BC cells using shRNA. The CCK-8 assay was used to measure the cell viability, and mRNA and protein expression levels were detected by RT-qPCR and Western blot (WB). Cell apoptosis and cell cycle were detected by flow cytometry. Subcutaneous xenograft model was used to assess in vivo tumor growth. BUBR1 was found to be highly expressed in BC. The high expression of BUBR1 was associated with poor prognosis of BC patients. Upon BUBR1 knockdown using shRNA, the proliferation and metastatic ability of cells were decreased. Moreover, the cells with BUBR1 knockdown underwent cell cycle arrest. And the results showed that BUBR1 loss inhibited the phosphorylation of TAK1/JNK. In vitro and in vivo studies indicated the knockdown of BUBR1 rendered the BC cells more sensitive to cisplatin. In summary, BUBR1 may be a potential therapeutic target for BC and targeting BUBR1 may help overcome cisplatin resistance in BC patients.
Collapse
Affiliation(s)
- Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China
| | - Ruiqing Wang
- The Eye Center in the Second Hospital of Jilin University, Nanguan District, Ziqiang Street 218#, Changchun City, Jilin, 130041, China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China
| | - Qing Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China
| | - Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China
| | - Jinping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun City, Jilin, 130062, China.
| |
Collapse
|
16
|
Ma Z, Han H, Zhou Z, Wang S, Liang F, Wang L, Ji H, Yang Y, Chen J. Machine learning-based establishment and validation of age-related patterns for predicting prognosis in non-small cell lung cancer within the context of the tumor microenvironment. IUBMB Life 2023; 75:941-956. [PMID: 37548145 DOI: 10.1002/iub.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023]
Abstract
Lung cancer (LC) is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for over 80% of cases. The impact of aging on clinical outcomes in NSCLC remains poorly understood, particularly with respect to the immune response. In this study, we explored the effects of aging on NSCLC using 307 genes associated with human aging from the Human Ageing Genomic Resources. We identified 53 aging-associated genes that significantly correlate with overall survival of NSCLC patients, including the clinically validated gene BUB1B. Furthermore, we developed an aging-associated enrichment score to categorize patients based on their aging subtypes and evaluated their prognostic and therapeutic response values in LC. Our analyses yielded two aging-associated subtypes with unique profiles in the tumor microenvironment, demonstrating varying responses to immunotherapy. Consensus clustering based on transcriptome profiles provided insights into the effects of aging on NSCLC and highlighted the potential of personalized therapeutic approaches tailored to aging subtypes. Our findings provide a new target and theoretical support for personalized therapeutic approaches in patients with NSCLC, offering insights into the potential impact of aging on cancer outcomes.
Collapse
Affiliation(s)
- Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haibo Han
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhiwei Zhou
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shijie Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Liang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Liang Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Ji
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
17
|
Comprehensive analysis of BUBs gene family in lung adenocarcinoma with immunological analysis. Aging (Albany NY) 2023; 15:810-829. [PMID: 36787437 PMCID: PMC9970319 DOI: 10.18632/aging.204517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most commonly malignant tumors, and major challenges remain in the treatment of LUAD. Budding uninhibited by benzimidazole 1/3 (BUB1/3) play significant roles in the process of spindle-assembly checkpoint (SAC) during mitosis. However, their roles in LUAD have not been established. Here, we performed an immunological analysis of BUB1/3 in LUAD using a comprehensive bioinformatics approach, quantitative real-time-PCR and Western blotting technique. Our results indicated that the expression levels of BUB1 and BUB3 in LUAD samples were higher than the expression levels in the control groups and were associated with some clinicopathologic parameters in patients with LUAD. BUB1/3 and their related genes were enriched in cell immune, and the immune infiltration analysis revealed that the BUB1/3 expression profile was significantly correlated with characteristics of immune cell infiltration. Survival analysis showed that the disease-free survival and overall survival of patients with LUAD decreased with an increase in the BUB1/3 expression levels. The mRNA and protein expression levels of BUB1 and BUB3 in each of the LUAD cell lines were upregulated to varying degrees. BUB1 and BUB3 are the potential immunological therapeutic intervention targets for patients with LUAD.
Collapse
|
18
|
Huang D, Tang E, Zhang T, Xu G. Characteristics of Fatty Acid Metabolism in Lung Adenocarcinoma to Guide Clinical Treatment. Front Immunol 2022; 13:916284. [PMID: 35860256 PMCID: PMC9289740 DOI: 10.3389/fimmu.2022.916284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) has a very high morbidity and mortality rate, and its pathogenesis and treatment are still in the exploratory stage. Fatty acid metabolism plays a significant role in tumorigenesis, progression, and immune regulation. However, the gene expression of fatty acid metabolism in patients with LUAD and its relationship with prognosis remain unclear. Methods We collected 309 fatty acid metabolism-related genes, established a LUAD risk model based on The Cancer Genome Atlas (TCGA) using Least Absolute Shrinkage Selection Operator (LASSO) regression analysis, and divided LUAD patients into high-risk and low-risk groups, which were further validated using the Gene Expression Omnibus (GEO) database. The nomogram, principal component analysis (PCA), and receiver operating characteristic (ROC) curves showed that the model had the best predictive performance. The ROC curves and calibration plots confirmed that the nomogram had good predictive power. We further analyzed the differences in clinical characteristics, immune cell infiltration, immune-related functions, chemotherapy drug sensitivity, and immunotherapy efficacy between the high-risk and low-risk groups. We also analyzed the enrichment pathways and protein–protein interaction (PPI) networks of different genes in the high-risk and low-risk groups to screen for target genes and further explored the correlation between target genes and differences in survival prognosis, clinical characteristics, gene mutations, and immune cells. Results Risk score and staging are independent prognostic factors for patients with LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three pivotal genes with poor survival prognosis in the high expression group, which were strongly associated with clinical symptoms and immune cells. Conclusion Risk score and staging are independent prognostic factors for patients with LUAD. The high-risk group had lower immune cell infiltration, was more sensitive to chemotherapeutic agents, and had a poorer survival prognosis. We also obtained three survival prognosis-associated target genes that are closely associated with clinical symptoms and immune cells and may be potential targets for immune-targeted therapy in LUAD.
Collapse
Affiliation(s)
- Dejing Huang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Enyu Tang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianze Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
- *Correspondence: Guangquan Xu,
| |
Collapse
|