1
|
Lopez-Pleguezuelos C, Aguado-Barrera ME, Carballo-Castro A, Peleteiro P, Calvo-Crespo P, Taboada-Valladares B, Lobato-Busto R, Fuentes-Ríos O, Galego-Carro J, Coedo-Costa C, Gómez-Caamaño A, Vega A. Epigenome-wide analysis reveals potential biomarkers for radiation-induced toxicity risk in prostate cancer. Clin Epigenetics 2025; 17:43. [PMID: 40050897 PMCID: PMC11887099 DOI: 10.1186/s13148-025-01846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Prostate cancer is the second most common cancer globally, with radiation therapy (RT) being a key treatment for clinically localized and locally advanced cases. Given high survival rates, addressing long-term side effects of RT is crucial for preserving quality-of-life. Radiogenomics, the study of genetic variations affecting response to radiation, has primarily focussed on genomic biomarkers, while DNA methylation studies offer insights into RT responses. Although most research has centred on tumours, no epigenome-wide association studies have explored peripheral blood biomarkers of RT-induced toxicities in prostate cancer patients. Identifying such biomarkers could reveal molecular mechanisms underlying RT response and enable personalized treatment. METHODS We analysed 105 prostate cancer patients (52 cases and 53 controls). Cases developed grade ≥ 2 genitourinary and/or gastrointestinal late toxicity after 12 months of starting RT, whereas controls did not. An epigenome-wide association study of post-RT toxicities was performed using the Illumina MethylationEPIC BeadChip, adjusting for age and cell type composition. We constructed two methylation risk scores-one using differentially methylated positions (MRSsites) and another using differentially methylated regions (MRSregions)-as well as a Support Vector Machine-based methylation signature (SVMsites). We evaluated RT effects on biological age and stochastic epigenetic mutations within established radiation response pathways. Gene Ontology and pathway enrichment analyses were also performed. RESULTS Pre-RT methylation analysis identified 56 differentially methylated positions (adjusted p-value ≤ 0.05), and 6 differentially methylated regions (p-value ≤ 0.05) associated with the genes NTM, ACAP1, IL1RL2, VOOP1, AKR1E2, and an intergenic region on chromosome 13 related to Short/Long Interspersed Nuclear Elements. Both Methylation Risk Scores (MRSsites AUC = 0.87; MRSregions AUC = 0.89) and the 8-CpG Support Vector Machine signature (SVMsites AUC = 0.98) exhibited strong discriminatory accuracy in classifying patients in the discovery cohort. Gene ontology analysis revealed significant enrichment (adjusted p-value ≤ 0.05) of genes involved in DNA repair, inflammatory response, tissue repair, and oxidative stress response pathways. CONCLUSIONS Epigenetic biomarkers show potential for predicting severe long-term adverse effects of RT in prostate cancer patients. The identified methylation patterns provide valuable insights into toxicity mechanisms and may aid personalized treatment strategies. However, validation in independent cohorts is essential to confirm their predictive value and clinical applicability.
Collapse
Affiliation(s)
- Carlos Lopez-Pleguezuelos
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Miguel E Aguado-Barrera
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Carballo-Castro
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Paula Peleteiro
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Begoña Taboada-Valladares
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ramón Lobato-Busto
- Department of Medical Physics, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Olivia Fuentes-Ríos
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Javier Galego-Carro
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carla Coedo-Costa
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ana Vega
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain.
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain.
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
2
|
Liu W, Zhao Y, Liu Q, Wu D, Li W, Fu Z, Yang L, Liang Y. Systematic bioinformatics analysis reveals the role of shikonin in blocking colon cancer progression by identifying senescence-induced genes. Front Pharmacol 2024; 15:1360587. [PMID: 39188951 PMCID: PMC11345165 DOI: 10.3389/fphar.2024.1360587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Shikonin, a naturally occurring naphthoquinone compound extracted from comfrey plants, has antitumor, anti-inflammatory, and antimicrobial properties. Cell senescence plays a key role in preventing tumor progression. It is unclear whether shikonin has an effect on cell senescence in colon cancer. In the current study, we first determine the IC50 values of shikonin on colon cancer cell lines HT29 and HCT116. Then, we verified the inhibitory effects of shikonin on the proliferation and migration abilities of colon cancer cell lines HT29 and HCT116 using cell counting kit-8, colony formation, and wound healing assays. Next, we identified a series of potential targets using high-throughput mRNA sequencing and identified 210 upregulated and 296 downregulated genes. KEGG profiling revealed eight downregulated genes associated with cell senescence: CCNB3, IL-1α, CXCL8, CDKN2A, MYC, IGFBP3, SQSTM1, and GADD45G. Among them, CXCL8 and CDKN2A were associated with poor prognosis in patients with colon cancer, suggesting that their downregulation by shikonin could improve patient survival. Furthermore, SA-β-galactosidase staining revealed that the percentage of cellular senescence in colon cancer cells was significantly increased after shikonin treatment. Molecular docking revealed that shikonin suppressed colon cancer progression by blocking CXCL8 activity. Based on these findings, we deem that shikonin might induce senescence and exert antitumor activity in colon cancer cells by downregulating CDKN2A and CXCL8. This provides a new molecular mechanism and potential therapeutic target for shikonin to inhibit colon cancer progression.
Collapse
Affiliation(s)
- Wenna Liu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yujia Zhao
- Department of Oncology, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingqing Liu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Dan Wu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenkai Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Le Yang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Kobayashi Y, Eguchi A, Imami K, Tempaku M, Izuoka K, Takase T, Kainuma K, Nagao M, Furuta N, Iwasa M, Nakagawa H, Fujisawa T, Togashi K. Circulating extracellular vesicles are associated with pathophysiological condition including metabolic syndrome-related dysmetabolism in children and adolescents with obesity. J Mol Med (Berl) 2024; 102:23-38. [PMID: 37874387 DOI: 10.1007/s00109-023-02386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Obesity of children and adolescents (OCA) is often accompanied by metabolic syndrome (MetS), which often leads to adult obesity and subsequent complications, yet the entire pathophysiological response is not fully understood. The number and composition of circulating extracellular vesicles (EV) reflect overall patient condition; therefore, we investigated the pathophysiological condition of OCA, including MetS-associated dysmetabolism, using circulating EVs. In total, 107 children and adolescents with or without obesity (boys, n = 69; girls, n = 38; median age, 10 years) were enrolled. Circulating EV number and EV protein composition were assessed via flow cytometry and liquid chromatography tandem-mass spectrometry, respectively. In a multivariate analysis, relative body weight (standardized partial regression coefficient (SPRC) 0.469, P = 0.012) and serum triglyceride level (SPRC 0.548, P < 0.001) were detected as independent parameters correlating with circulating EV number. Proteomic analysis identified 31 upregulated and 45 downregulated EV proteins in OCA. Gene ontology analysis revealed upregulated proteins to be involved in various biological processes, including intracellular protein transport, protein folding, stress response, leukocyte activation, innate immune response, and platelet degranulation, which can modulate lipid and glucose metabolism, skeletal and cardiac muscle development, inflammation, immune response, carcinogenesis, and cancer progression. Notably, several identified EV proteins are involved in neuro-development, neurotransmitter release, and neuro-protective agents in OCA. Circulating EVs were derived from adipocytes, hepatocytes, B cell lymphocytes, and neurons. Circulating EV number is significantly associated with MetS-related dysmetabolism and the EV protein cargo carries a special "signature" that reflects the alteration of various biological processes under the pathophysiological condition of OCA. KEY MESSAGES: Circulating EV number correlates with physical and laboratory parameters for obesity in children and adolescents. Relative body weight and triglyceride are independent factors for increased circulating EVs. EV composition is significantly changed in obesity of children and adolescents. Identified EV composition changes associated with obesity and involves in metabolism, immune response, and cancer progression. Circulating EVs are partially derived from adipocyte, hepatocytes, B cells, and neurons.
Collapse
Affiliation(s)
- Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Biobank Center, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Koshi Imami
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kiyora Izuoka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takafumi Takase
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Keigo Kainuma
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Noriko Furuta
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takao Fujisawa
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Kenji Togashi
- Department of Health and Physical Education, Faculty of Education, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
4
|
He D, Tang H, Yang X, Liu X, Zhang Y, Shi J. Elaboration and validation of a prognostic signature associated with disulfidoptosis in lung adenocarcinoma, consolidated with integration of single-cell RNA sequencing and bulk RNA sequencing techniques. Front Immunol 2023; 14:1278496. [PMID: 37965333 PMCID: PMC10641741 DOI: 10.3389/fimmu.2023.1278496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD), the predominant subtype of non-small cell lung cancer (NSCLC), remains a pervasive global public health concern. Disulfidoptosis, a nascent form of regulated cell death (RCD), presents an emerging field of inquiry. Currently, investigations into disulfidoptosis are in their initial stages. Our undertaking sought to integrate single-cell RNA sequencing (scRNA-seq) in conjunction with traditional bulk RNA sequencing (bulk RNA-seq) methodologies, with the objective of delineating genes associated with disulfidoptosis and subsequently prognosticating the clinical outcomes of LUAD patients. Methods Initially, we conducted an in-depth examination of the cellular composition disparities existing between LUAD and normal samples using scRNA-seq data sourced from GSE149655. Simultaneously, we scrutinized the expression patterns of disulfidoptosis-associated gene sets across diverse cell types. Subsequently, leveraging the bulk RNA-seq data, we formulated disulfidoptosis-related prognostic risk signatures (DRPS) employing LASSO-Cox regression. This was accomplished by focusing on genes implicated in disulfidoptosis that exhibited differential expression within endothelial cells (ECs). Sequentially, the robustness and precision of the DRPS model were rigorously verified through both internal and external validation datasets. In parallel, we executed single-cell trajectory analysis to delve into the differentiation dynamics of ECs. Concluding our study, we undertook a comprehensive investigation encompassing various facets. These included comparative assessments of enrichment pathways, clinicopathological parameters, immune cell abundance, immune response-associated genes, impacts of immunotherapy, and drug predictions among distinct risk cohorts. Results The scrutiny of scRNA-seq data underscored discernible disparities in cellular composition between LUAD and normal samples. Furthermore, disulfidoptosis-associated genes exhibited marked discrepancies within endothelial cells (ECs). Consequently, we formulated the Disulfidoptosis-Related Prognostic Signature (DRPS) to facilitate prognostic prediction. The prognostic nomogram based on the risk score effectively demonstrated DRPS's robust capacity to prognosticate survival outcomes. This assertion was corroborated by rigorous assessments utilizing both internal and external validation sets, thus affirming the commendable predictive accuracy and enduring stability of DRPS. Functional enrichment analysis shed light on the significant correlation of DRPS with pathways intrinsic to the cell cycle. Subsequent analysis unveiled correlations between DRPS and gene mutations characteristic of LUAD, as well as indications of an immunosuppressive status. Through drug prediction, we explored potential therapeutic agents for low-risk patients. Concluding our investigation, qRT-PCR experiments confirmed the heightened expression levels of EPHX1, LDHA, SHC1, MYO6, and TLE1 in lung cancer cell lines.
Collapse
Affiliation(s)
- Dabao He
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hengfeng Tang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaoling Yang
- Department of Laboratory Medicine, Shenzhen Baoan District Songgang People’s Hospital, Shenzhen, China
| | - Xiaohong Liu
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yipeng Zhang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Junzhu Shi
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
5
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
6
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
7
|
Shiau JP, Chuang YT, Yen CY, Chang FR, Yang KH, Hou MF, Tang JY, Chang HW. Modulation of AKT Pathway-Targeting miRNAs for Cancer Cell Treatment with Natural Products. Int J Mol Sci 2023; 24:ijms24043688. [PMID: 36835100 PMCID: PMC9961959 DOI: 10.3390/ijms24043688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
8
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
9
|
Dai Y, Liu Y, Li J, Jin M, Yang H, Huang G. Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway. Bioengineered 2022; 13:13906-13918. [PMID: 35706397 PMCID: PMC9275963 DOI: 10.1080/21655979.2022.2086378] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active ingredient of the traditional Chinese medicine comfrey is shikonin, a naphthoquinone compound. The focus of this study was to investigate the effect of shikonin on the proliferation, invasion, migration, and chemoresistance of non-small cell lung cancer (NSCLC) cells, and to explore its underlying molecular biological mechanisms. The results show that shikonin inhibited the viability, proliferation, invasion, and migration of NSCLC cells A549 and PC9, and induced apoptosis. As the inhibitor of pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, shikonin inhibited glucose uptake and the production of lactate, the final metabolite of aerobic glycolysis. In vivo chemotherapeutic assay showed that shikonin reduced the tumor volume and weight in NSCLC mice model and increased the sensitivity to cisplatin chemotherapy. Histoimmunology experiments showed the combination of shikonin and cisplatin downregulated the expression of PKM2 and its transcriptionally regulated downstream gene glucose transporter 1 (Glut1) in tumor tissue. In an assessment of glucose metabolism, micro-PET/CT data showed a combination of shikonin and cisplatin inhibited the fluorodeoxy glucose (18F-FDG) uptake into tumor. Since exosomal PKM2 affected the sensitivity to cisplatin in NSCLC cells, we also demonstrated shikonin could inhibit exosome secretion and exosomal PKM2 through the administration of exosomal inhibitor GW4869. Furthermore, shikonin sensitized cisplatin treatment by reducing the extracellular secretion of exosomal PKM2. In conclusion, we suggest that shikonin not only inhibits PKM2 intracellularly but also reduces glycolytic flux and increases cisplatin sensitivity through the exosomal pathway.
Collapse
Affiliation(s)
- Yitian Dai
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuping Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Li
- Qiqihar Medical University, Qiqihar Heilongjiang, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|