1
|
Fu Z, Zhou J, Pan H, Yang S, Pan Z, Shen Y, Yao J, Hu J. QingGan LiDan capsules improved alcoholic liver injury by regulating liver lipid transport and oxidative stress in mice. Front Pharmacol 2025; 16:1575280. [PMID: 40206071 PMCID: PMC11979125 DOI: 10.3389/fphar.2025.1575280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Background The QingGan LiDan capsule (QGLD) consists of five traditional Chinese herbs, which have been used for hepatobiliary diseases such as jaundice. However, the effects and mechanisms by which QGLD prevent alcoholic liver diseases (ALD) remain unknown. Aim of the study Investigate the therapeutic potential of QingGan Lidan capsule (QGLD) in alleviating alcohol-induced liver injury. Materials and Methods Acute alcoholic liver injury model and chronic and Binge ethanol Feeding Model (NIAAA) model were established. Mice were administered QGLD (360, 720, 1,440 mg/kg) or vehicle. Liver function indicators (ALT, AST), serum lipid (TC, TG), antioxidant markers (SOD, GSH, MDA), lipid metabolism/transport genes relative expression levels, liver and ileal villus morphology were analyzed. Network pharmacology analysis was also performed to identify potential targets and pathways of QGLD. Results QGLD reduced serum ALT, AST, hepatic TC, TG, and lipid droplet accumulation in both models. It upregulated antioxidant enzymes (SOD, GSH) and downregulated MDA. QGLD regulated the mRNA levels of genes related to the NRF2/KEAP1 pathway and lipid transport. Network pharmacology identified 221 potential targets. Conclusion QGLD mitigates alcohol-induced liver injury by reducing lipid accumulation, regulating lipid transport and enhancing antioxidant capacity. This supports its potential application in ALD management.
Collapse
Affiliation(s)
- Zhiwen Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Jiangxi Conba Traditional Chinese Medicine Co.,Ltd, Shangrao, China
| | - Jiafeng Zhou
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Hongye Pan
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
- Zhejiang Key Laboratory of Major TCM Cultivation and TCM Innovation, Hangzhou, China
| | - Song Yang
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Zhenzhen Pan
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Yujia Shen
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
- Zhejiang Key Laboratory of Major TCM Cultivation and TCM Innovation, Hangzhou, China
| | - Jiangning Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Conba Pharmaceutical Co.,Ltd, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
- Zhejiang Key Laboratory of Major TCM Cultivation and TCM Innovation, Hangzhou, China
| |
Collapse
|
2
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
3
|
El Zouka Y, Sheta E, Abdelrazek Salama M, Selima E, Refaat R, Salaheldin Abdelhamid Ibrahim S. Tetrandrine ameliorated atherosclerosis in vitamin D3/high cholesterol diet-challenged rats via modulation of miR-34a and Wnt5a/Ror2/ABCA1/NF-kB trajectory. Sci Rep 2024; 14:21371. [PMID: 39266573 PMCID: PMC11393063 DOI: 10.1038/s41598-024-70872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases that may lead to mortality. This study aimed to evaluate the therapeutic potential of tetrandrine in high cholesterol diet (HCD)-induced atherosclerosis, in rats, via modulation of miR-34a, as well as, Wnt5a/Ror2/ABCA1/NF-κB pathway and to compare its efficacy with atorvastatin. Induction of AS, in male rats, was done via IP administration of vitamin D3 (70 U/Kg for 3 days) together with HCD. At the end of the 9th week, rats were treated with atorvastatin at a dose of 20 mg/kg, and tetrandrine at different doses of (18.75, and 31.25 mg/kg) for 22 days. Serum inflammatory cytokines and lipid profile, liver oxidative stress parameters, and aortic tissue Wnt5a, Ror2, ABCA1, NF-κB, miR-34a levels were assessed in all experimental groups. Histopathological and Immunohistochemical assessments of aortic tissue sections were done. Results showed that tetrandrine treatment reverted the inflammatory and oxidative stress state together with reducing the serum lipids via modulating miR-34a, and Wnt5a/Ror2/ABCA1/NF-κB pathway. Moreover, it reverted the histopathological abnormalities observed in AS rats. Tetrandrine beneficial effects, in both doses, were comparable to that of atorvastatin, in most of the discussed parameters. These findings praise tetrandrine as a promising agent for management of atherosclerosis.
Collapse
Affiliation(s)
- Yasmin El Zouka
- Department of Pharmacology, Faculty of Pharmacy, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt.
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona Abdelrazek Salama
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eman Selima
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rowaida Refaat
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
4
|
Yue C, Wu Y, Xia Y, Xin T, Gong Y, Tao L, Shen C, Zhu Y, Shen M, Wang D, Shen J. Tbxt alleviates senescence and apoptosis of nucleus pulposus cells through Atg7-mediated autophagy activation during intervertebral disk degeneration. Am J Physiol Cell Physiol 2024; 327:C237-C253. [PMID: 38853649 DOI: 10.1152/ajpcell.00126.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.
Collapse
Affiliation(s)
- Caichun Yue
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yinghui Wu
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yanzhang Xia
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianwen Xin
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yuhao Gong
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Linfeng Tao
- Department of Critical Care Medicine, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Minghong Shen
- Department of Pathology, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Donglai Wang
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Jun Shen
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| |
Collapse
|
5
|
Wang D, Lu K, Zou G, Wu D, Cheng Y, Sun Y. Attenuating intervertebral disc degeneration through spermidine-delivery nanoplatform based on polydopamine for persistent regulation of oxidative stress. Int J Biol Macromol 2024; 274:132881. [PMID: 38838900 DOI: 10.1016/j.ijbiomac.2024.132881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
As one of the most widespread musculoskeletal diseases worldwide, intervertebral disc degeneration (IVDD) remains an intractable clinical problem. Currently, oxidative stress has been widely considered as a significant risk factor in the IVDD pathological changes, and targeting oxidative stress injury to improve the harsh microenvironment may provide a novel and promising strategy for disc repair. It is evident that spermidine (SPD) has the ability to attenuate oxidative stress across several disease models. However, limited research exists regarding its impact on oxidative stress within the intervertebral disc. Moreover, enhancing the local utilization rate of SPD holds great significance in IVDD management. This study aimed to develop an intelligent biodegradable mesoporous polydopamine (PDA) nanoplatform for sustained release of SPD. The obtained PDA nanoparticles with spherical morphology and mesoporous structure released loaded-therapeutic molecules under low pH and H2O2. Combined treatment with SPD loaded into PDA nanoparticles (SPD/PDA) resulted in better therapeutic potential than those with SPD alone on oxidative stress injury. Furthermore, both SPD and SPD/PDA could induce anti-inflammatory M2 macrophage polarization. Upon injection into degenerative IVDs, the SPD/PDA group achieved a good repair efficacy with a long-term therapeutic effect. These findings indicated that the synergized use of SPD with responsive drug delivery nanocarriers may steadily scavenge reactive oxygen species and provide an effective approach toward the treatment of IVDD.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Kun Lu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Guoyou Zou
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Duanrong Wu
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Yi Cheng
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Yongming Sun
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zhang W, Guo H, Li L, Zhang M, Xu E, Dai L. Network Pharmacology-Based Strategy Integrated with Molecular Docking and In Vitro Experimental Validation to Explore the Underlying Mechanism of Fangji Huangqi Decoction in Treating Rheumatoid Arthritis. ACS OMEGA 2024; 9:31878-31889. [PMID: 39072058 PMCID: PMC11270556 DOI: 10.1021/acsomega.4c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Fangji Huangqi decoction (FHD), as a classic traditional Chinese medicine formula, has been clinically proven effective against rheumatoid arthritis (RA), yet its therapeutic mechanism remains unclear. This study employed network pharmacology and molecular docking methods to explore the major active components, biological targets, and signaling pathways of FHD. Subsequently, lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used as the in vitro model to validate the modulating effects of FHD on molecules/inflammatory mediators using various biomedical techniques/kits such as MTT assay, Griess reagents, flow cytometry, RT-qPCR, and immunoblotting. Network pharmacology analyses indicated a total of 20 major active components and 30 core biological targets of FHD against RA. Pathway enrichment analyses demonstrated the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the efficacy of the formula. Furthermore, experimental evidence demonstrated that FHD dose-dependently and significantly inhibited the productions of nitric oxide (NO) and reactive oxygen species; lowered the mRNA expression levels of proinflammatory mediators including iNOS, COX-2, TNF-α, ΙL-1β, and IL-6; decreased protein levels of the phosphorylated forms of p38, ERK, JNK, and NF-κB p65. Additionally, the results of molecular docking showed that tetrandrine, licochalcone A, oxonantenine, isorhamnetin, and kaempferol in FHD exerted the potent capability of binding to target molecules in the focused signaling pathway, probably being the potential effective substances for FHD. Our network pharmacology study integrated with cellular validation has elucidated that FHD exerts downregulating effects of the MAPK and NF-κB signaling pathway, ultimately leading to inhibitory effects on the productions of proinflammatory mediators in LPS-stimulated RAW264.7 cells. This work comprehensively demonstrated the effective substances, key targets, and signaling pathways involved in the anti-RA effects of the formula, and these findings provide a further understanding of the underlying mechanism of FHD in managing RA.
Collapse
Affiliation(s)
- Weijin Zhang
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Hui Guo
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Leyuan Li
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Mengmeng Zhang
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| | - Erping Xu
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
| | - Liping Dai
- Collaborative
Innovation Center of Research and Development on the Whole Industry
Chain of Yu-Yao, Henan University of Chinese
Medicine (HUCM), Zhengzhou, Henan 450000, China
- School
of Pharmacy, HUCM, Zhengzhou, Henan 450000, China
| |
Collapse
|
7
|
Mao T, Fan J. Myricetin Restores Autophagy to Attenuate Lumbar Intervertebral Disk Degeneration Via Negative Regulation of the JAK2/STAT3 Pathway. Biochem Genet 2024:10.1007/s10528-024-10838-x. [PMID: 38842745 DOI: 10.1007/s10528-024-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Autophagy is a critical player in lumbar intervertebral disk degeneration (IDD), and autophagy activation has been suggested to prevent the apoptosis of nucleus pulposus cells (NPCs). Myricetin has anti-cancer, anti-inflammatory, and antioxidant potentials and can activate autophagy. Thus, this study focused on the roles and mechanisms of myricetin in IDD. A puncture-induced rat IDD model was established and intraperitoneally injected with 20-mg/kg/day myricetin. Histopathological changes of intervertebral disks (IVDs) were assessed by hematoxylin and eosin staining and Safranin O/Fast Green staining. The isolated NPCs from IVDs of healthy rats were stimulated with IL-1β to mimic IDD-like conditions. The roles of myricetin in cell apoptosis, extracellular matrix (ECM) degradation, autophagy repression, and the JAK2/STAT3 pathway activation were examined by cell counting kit-8, flow cytometry, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence staining. Myricetin treatment attenuated the apoptosis and ECM degradation, and enhanced autophagy in the IL-1β-treated NPCs, whereas the myricetin-mediated protection was limited by autophagy inhibition. Mechanistically, myricetin activated autophagy through blocking the JAK2/STAT3 signaling. In vivo experiments revealed that intraperitoneal injection of myricetin activated NPC autophagy to relieve puncture injury in rats. Myricetin prevents IDD by attenuating NPC apoptosis and ECM degradation through blocking the JAK2/STAT3 pathway to enhance autophagy.
Collapse
Affiliation(s)
- Tian Mao
- School of Acupuncture-Moxibustion and Orthopedic, Hubei University of Chinese Medicine, Wuhan, 430060, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
8
|
Tang X, Lin S, Luo H, Wang L, Zhong J, Xiong J, Lv H, Zhou F, Wan Z, Cao K. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 2024; 897:148084. [PMID: 38104954 DOI: 10.1016/j.gene.2023.148084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.
Collapse
Affiliation(s)
- Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Sijian Lin
- The Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Zongmiao Wan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
9
|
Wang K, Deng J, Yang J, Wang A, Ye M, Chen Q, Chen G, Lin D. Tetrandrine promotes the survival of the random skin flap via the PI3K/AKT signaling pathway. Phytother Res 2024; 38:527-538. [PMID: 37909161 DOI: 10.1002/ptr.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
11
|
Zhang Y, Zhang J, Sun Z, Wang H, Ning R, Xu L, Zhao Y, Yang K, Xi X, Tian J. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA. Front Immunol 2023; 14:1188774. [PMID: 37325630 PMCID: PMC10266224 DOI: 10.3389/fimmu.2023.1188774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is one of the most common health problems in the elderly and a major causative factor in low back pain (LBP). An increasing number of studies have shown that IDD is closely associated with autophagy and immune dysregulation. Therefore, the aim of this study was to identify autophagy-related biomarkers and gene regulatory networks in IDD and potential therapeutic targets. Methods We obtained the gene expression profiles of IDD by downloading the datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO) public database. Subsequently, differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), and gene set enrichment analysis (GSEA) were performed to explore the biological functions of DEGs. Differentially expressed autophagy-related genes (DE-ARGs) were then crossed with the autophagy gene database. The hub genes were screened using the DE-ARGs protein-protein interaction (PPI) network. The correlation between the hub genes and immune infiltration and the construction of the gene regulatory network of the hub genes were confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation of hub genes in a rat IDD model. Results We obtained 636 DEGs enriched in the autophagy pathway. Our analysis revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA, CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell infiltration analysis revealed that there was an increased proportion of CD8+ T cells and M0 macrophages in IDD, whereas CD4+ memory T cells, neutrophils, resting dendritic cells, follicular helper T cells, and monocytes were much less abundant. Subsequently, the competitive endogenous RNA (ceRNA) network was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs (miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and CAPN1, were shown to be consistent with the bioinformatic analysis results. Conclusion Our study identified MAPK8 and CAPN1 as key biomarkers of IDD. These key hub genes may be potential therapeutic targets for IDD.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Sun
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longyu Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Xi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Tian
- School of Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Sun Y, Yuan C, Yu J, Zhu C, Wei X, Yin J. Plant-derived bisbenzylisoquinoline alkaloid tetrandrine prevents human podocyte injury by regulating the miR-150-5p/NPHS1 axis. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Podocytes have become a crucial target for kidney disease. Tetrandrine (TET), the main active component of a Chinese medicine formula Fangji Huangqi Tang, has shown a positive effect on various renal diseases. We aimed to investigate the effect and mechanism of TET on podocytes. The targeting relationship between microRNA (miR)-150-5p and nephrosis 1 (NPHS1) was determined by a dual-luciferase reporter gene assay. Cell proliferation, migration, and apoptosis were detected by cell counting kit-8, Transwell, and flow cytometry assays, respectively. The expression of miR-150-5p and NPHS1 was detected by RT-qPCR. The levels of Nephrin, Caspase-3, Bcl-2, Bax, E-cadherin, and α-smooth muscle actin were detected by Western blot. TET prompted cell viability and inhibited migration and apoptosis of puromycin aminonucleoside-induced human podocytes (HPC) in a dose-dependent manner. miR-150-5p directly targeted NPHS1 and was upregulated in damaged HPC. TET decreased the miR-150-5p expression and increased the level of NPHS1 and Nephrin. Overexpressed miR-150-5p inhibited the expression of NPHS1 and Nephrin, and reversed the protective effects of TET on injured HPC. TET protects the biological function of HPC by suppressing the miR-150-5p/NPHS1 axis. It reveals that TET may be a potential drug and miR150-5p is a potential therapeutic target for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Yue Sun
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Chenyi Yuan
- Department of Nephropathy, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China
| | - Jin Yu
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Caifeng Zhu
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Xia Wei
- Department of Digestive, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China
| | - Jiazhen Yin
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| |
Collapse
|
14
|
BMSC-Derived Exosomes Alleviate Intervertebral Disc Degeneration by Modulating AKT/mTOR-Mediated Autophagy of Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:9896444. [PMID: 35855812 PMCID: PMC9288351 DOI: 10.1155/2022/9896444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of intervertebral disc degeneration (IDD) is still unclear. It has been shown that the pathological process of IDD is most closely related to inflammation of nucleus pulposus cells (NPCs), in which inflammatory factors play an important role. Exosomes are the main paracrine mediators and are microvesicles with biological functions similar to those of the cells from which they are derived. Studies have shown that bone mesenchymal stem cells (BMSCs) can inhibit apoptosis of NPCs by sending exosomes as anti-inflammatory and antioxidant, which has been proved to be effective on IDD. However, the specific mechanism of inhibiting apoptosis of NPCs is still unclear. In our study, BMSC-derived exosomes (BMSC-Exo) were isolated from the BMSC culture medium, and their antiapoptotic effects were evaluated in cells and rat models to explore the possible mechanisms. We observed that BMSC-Exo promotes autophagy in NPCs and inhibits the release of inflammatory factors such as IL-1β and TNF-α in LPS-treated NPCs and inhibits apoptosis in NPCs. Further studies showed that BMSC-Exo inhibited the Akt-mTOR pathway. Intramuscular injection of BMSC-Exo alleviates disc degeneration in rat IDD models. In conclusion, our results suggest that BMSC-Exo can reduce NPC apoptosis and alleviate IDD by promoting autophagy by inhibiting the Akt-mTOR pathway. Our study confers a promising therapeutic strategy for IDD.
Collapse
|