1
|
Yang Z, Feng X, Yu H, Lv L, Gao C, Liu W, Yi S, Jia C, Fu B. Identification of tumor immune infiltration-associated VPS72 and prognostic significance of VPS72 and CD8A in hepatocellular carcinoma. Discov Oncol 2025; 16:410. [PMID: 40146476 PMCID: PMC11950588 DOI: 10.1007/s12672-025-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Copy Number Alterations (CNAs)-driven genes have gained attention as potential markers for predicting the response to immune checkpoint blockade in cancer treatment. Among them, VPS72 has emerged as a promising candidate in hepatocellular carcinoma (HCC). However, the relationship between VPS72 and immune infiltration remains unclear. METHODS TIMER analysis was performed to identify immune populations in bulk-RNAseq data. Then, we investigated the relationship between VPS72 and immune infiltration in HCC using diverse data sources, including the TCGA and GEO databases, clinical specimens, and animal models. RESULTS Our findings in the immunogenomic and TCGA-LIHC studies revealed significant enrichment of VPS72 among IRG in the altered group. Differential analysis and KEGG pathway analysis further highlighted the involvement of differentially expressed genes (DETs) in pathways related to the T cell receptor signaling pathway. Importantly, TIMER analysis suggested that low expression of VPS72 was associated with high infiltration of CD8 + T cells in multiple publicly available HCC datasets. To validate these findings, we conducted in vivo experiments and observed higher CD8A expression in VPS72-knockdown tumors. Additionally, in our patient cohort, individuals with low VPS72 expression exhibited higher CD8A expression. Furthermore, we identified a co-expression subtype characterized by low VPS72 and high CD8A levels, which showed a more favorable disease-free survival outcome in HCC. CONCLUSIONS The expression of VPS72 in tumors is associated with the tumor infiltration. VPS72 and CD8A coexpression are prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Lei Lv
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Chengli Gao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Binsheng Fu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Vázquez Salgado AM, Cai C, Lee M, Yin D, Chrystostome ML, Gefre AF, He S, Kieckhaefer JE, Wangensteen KJ. In Vivo CRISPR Activation Screening Reveals Chromosome 1q Genes VPS72, GBA1, and MRPL9 Drive Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025; 19:101460. [PMID: 39761726 PMCID: PMC11929076 DOI: 10.1016/j.jcmgh.2025.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by using CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes. METHODS We used data from The Cancer Genome Atlas to identify that frequently copy number-amplified and up-regulated genes all reside on human chromosomes 1q and 8q. We generated CRISPRa screening transposons that contain oncogenic Myc to drive tumor formation. We conducted CRISPRa screens in vivo in the liver to identify tumor driver genes. We extensively validated the findings in separate mice and performed RNA sequencing analysis to explore mechanisms driving tumorigenesis. RESULTS We targeted genes that frequently undergo amplification in human HCC using an in vivo CRISPRa screening system in mice, which induced extensive liver tumorigenesis. Human chromosome 1q genes Zbtb7b, Vps72, Gba1, and Mrpl9 emerged as drivers of liver tumorigenesis. In human HCC there is a trend in correlation between levels of MRPL9, VPS72, or GBA1 and poor survival. In validation assays, activation of Vps72, Gba1, or Mrpl9 resulted in extensive liver tumorigenesis and decreased survival in mice. RNA sequencing revealed different mechanisms driving HCC, with Mrpl9 activation altering genes functionally related to mitochondrial function, Vps72 levels altering phospholipid metabolism, and Gba1 activation enhancing endosomal-lysosomal activity, all leading to promotion of cellular proliferation. Analysis of human tumor tissues with high levels of MRPL9, VPS72, or GBA1 revealed congruent results, indicating conserved mechanisms driving HCC. CONCLUSIONS This study reveals chromosome 1q genes Vps72, Gba1, and Mrpl9 as drivers of HCC. Future efforts to prevent or treat HCC can focus on these new driver genes.
Collapse
Affiliation(s)
- Alexandra M Vázquez Salgado
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Pharmacology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunmiao Cai
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Markcus Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dingzi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marie-Lise Chrystostome
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adrienne F Gefre
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shirui He
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia E Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Liu X, Zhang R, Liu L, Zhi S, Feng X, Shen Y, Wang L, Zhang Q, Chen Y, Hao J. Sohlh2 Promotes the Progression of Hepatocellular Carcinoma via TGM2-Mediated Autophagy. Mol Carcinog 2025; 64:138-151. [PMID: 39436118 DOI: 10.1002/mc.23832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for 85% of liver cancer-related deaths. Autophagy controls HCC cell growth, invasion, metastasis, drug resistance, and stemness. Spermatogenesis and oogenesis basic helix-loop-helix transcription factor 2 (Sohlh2) can bind to the E-boxes in the promoter regions of target genes, which are involved in multiple neoplasms. In this study, Sohlh2 was highly expressed in HCC tissues and was related to poor prognosis. Moreover, Sohlh2 overexpression promoted the proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. However, Sohlh2 silencing inhibited proliferation, migration, invasion, and metastasis of HCC cells in vivo and in vitro. Mechanistically, Sohlh2 could bind to the promoter of TGM2 and enhance its transcriptional activity, thereby enhancing the autophagy of HCC cells. Furthermore, Sohlh2 protein levels were positively associated with TGM2 expression in HCC tissues. Taken together, these results demonstrate that Sohlh2 can promote HCC progression via TGM2-mediated autophagy, implying that Sohlh2 is a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Xuyue Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lanlan Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoning Feng
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Shen
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyan Wang
- Research Center for Medical and Structural Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanru Chen
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Xu X, Wang W, He Y, Yao Y, Yang B. Prognostic marker VPS72 could promote the malignant progression of prostate cancer. BMC Cancer 2024; 24:713. [PMID: 38858662 PMCID: PMC11163694 DOI: 10.1186/s12885-024-12488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This paper attempted to clarify the role and mechanism of vacuolar protein sorting-associated protein 72 homolog (VPS72) in the progression of prostate cancer (PCa). METHODS Clinical information and gene expression profiles of patients with prostate cancer were obtained from The Cancer Genome Atlas (TCGA). VPS72 expression in PCa and the potential mechanism by which VPS72 affects PCa progression was investigated. Next, we performed COX regression analysis to identify the independent prognostic factors of PCa, and constructed a nomogram. The sensitivity of chemotherapeutic medications was anticipated using "pRRophetic". Subsequently, in vitro assays to validate the effect of VPS72 on PCa cell proliferation, migration and susceptibility to anti-androgen therapy. RESULTS The expression of VPS72 was considerably higher in PCa tissues compared to normal tissues. Significant correlations were found between high VPS72 expression and a poor prognosis and adverse clinicopathological factors. The nomogram model constructed based on VPS72 expression has good predictive performance. According to GSEA, VPS72-related genes were enriched in the NF-kB pathways, cytokine-cytokine receptor interaction and chemokine signaling pathway in PCa. Although PCa with low VPS72 expression was more adaptable to chemotherapeutic medications, our in vitro experiment showed that VPS72 knockdown significantly decreased the PCa cell migration, proliferation, and resistance to anti-androgen therapy. CONCLUSIONS In summary our findings suggests that VPS72 could play a crucial role in the malignant progression of PCa, and its expression level can be employed as a possible biomarker of PCa prognosis.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian, Liaoning, 116001, China
| | - Wei Wang
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian, Liaoning, 116001, China
| | - Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian, Liaoning, 116001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, 6, Jiefang Street, Zhongshan District, Dalian, Liaoning, 116001, China.
| | - Bo Yang
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, 467, Zhongshan Road, Shahekou District, Dalian, Liaoning, 116001, China.
| |
Collapse
|
5
|
Meng W, Lu X, Wang G, Xiao Q, Gao J. ZNF692 drives malignant development of hepatocellular carcinoma cells by promoting ALDOA-dependent glycolysis. Funct Integr Genomics 2024; 24:53. [PMID: 38453820 PMCID: PMC10920453 DOI: 10.1007/s10142-024-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.
Collapse
Affiliation(s)
- Weiwei Meng
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Xiaojuan Lu
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Guanglei Wang
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong, 518108, P.R. China
| | - Jing Gao
- Department of Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11, Jixiang Road, Shiyan Street, Baoan District, Shenzhen, Guangdong, 518108, P.R. China.
| |
Collapse
|
6
|
Liu F, Liao Z, Qin L, Zhang Z, Zhang Q, Han S, Zeng W, Zhang H, Liu Y, Song J, Chen W, Zhu H, Liang H, Chen X, Zhang B, Zhang Z. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology 2023; 78:1384-1401. [PMID: 36631007 PMCID: PMC10581431 DOI: 10.1097/hep.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
7
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
8
|
Gai Y, Qian L, Jiang S, Li J, Zhang X, Yang X, Pan H, Liao Y, Wang H, Huang S, Zhang S, Nie H, Ma M, Li H. Vacuolar protein sorting 35 (VPS35) acts as a tumor promoter via facilitating cell cycle progression in pancreatic ductal adenocarcinoma. Funct Integr Genomics 2023; 23:90. [PMID: 36933061 DOI: 10.1007/s10142-023-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is insidious and highly malignant with extremely poor prognosis and drug resistance to current chemotherapies. Therefore, there is a critical need to investigate the molecular mechanism underlying PDAC progression to develop promising diagnostic and therapeutic interventions. In parallel, vacuolar protein sorting (VPS) proteins, involved in the sorting, transportation, and localization of membrane proteins, have gradually attracted the attention of researchers in the development of cancers. Although VPS35 has been reported to promote carcinoma progression, the specific molecular mechanism is still unclear. Here, we determined the impact of VPS35 on the tumorigenesis of PDAC and explored the underlying molecular mechanism. We performed a pan-cancer analysis of 46 VPS genes using RNAseq data from GTEx (control) and TCGA (tumor) and predicted potential functions of VPS35 in PDAC by enrichment analysis. Furthermore, cell cloning experiments, gene knockout, cell cycle analysis, immunohistochemistry, and other molecular and biochemical experiments were used to validate the function of VPS35. Consequently, VPS35 was found overexpressed in multiple cancers and correlated with the poor prognosis of PDAC. Meanwhile, we verified that VPS35 could modulate the cell cycle and promote tumor cell growth in PDAC. Collectively, we provide solid evidence that VPS35 facilitates the cell cycle progression as a critical novel target in PDAC clinical therapy.
Collapse
Affiliation(s)
- Yanzhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liheng Qian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaomei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yingna Liao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huiling Wang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
9
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:5584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Wang S, Wang Y, Li S, Nian S, Xu W, Liang F. Far upstream element -binding protein 1 (FUBP1) participates in the malignant process and glycolysis of colon cancer cells by combining with c-Myc. Bioengineered 2022; 13:12115-12126. [PMID: 35546072 PMCID: PMC9276009 DOI: 10.1080/21655979.2022.2073115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Human distal upstream element (Fuse) binding protein 1 (FUBP1) is a transcriptional regulator of c-Myc and represents an important prognostic marker in many cancers. Therefore, the present study aimed to investigate whether FUBP1 could combine with c-Myc to participate in the progression of colon cancer. Detection of FUBP1 expression was done through reverse transcription-quantitative PCR (RT-qPCR), and the combination of FUBP1 and c-Myc was detected by immunoprecipitation assay. Cell counting kit (CCK)-8, colony formation, transwell and wound healing were applied for assessing the ability of cells to proliferate, migrate, and invade; glycolysis and lactic acid detection kits were used to detect glucose uptake and lactic acid content, while western blotting was adopted to detect the protein expression of glycolysis-related genes. FUBP1 expression was elevated in HCT116 cells relative to other colon cancer cell lines, and silencing FUBP1 could inhibit the ability of HCT116 cells to proliferate, migrate, invade and glycolysis, and enhance its apoptosis. In addition, the results of immunoprecipitation experiments showed that FUBP1 could bind to c-Myc. c-Myc overexpression reversed the inhibitory effects of FUBP1 knockdown on the ability of HCT116 cells to proliferate, migrate, invade and glycolysis. The results indicated that FUBP1 could participate in the deterioration process of colon cancer cells by combining with c-Myc, and it has clinical significance for understanding the key role of FUBP1 in tumor genesis.
Collapse
Affiliation(s)
- Shanwei Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Sheng Li
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Shen Nian
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Wenjing Xu
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Fenli Liang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| |
Collapse
|