1
|
Yu Y, Chen H, Wang R, Xu F, Yin J, Zang T, Zhou C, Liu C, Li C, Shen L, Ge J. sFRP5 ameliorates atherosclerosis by suppressing the JNK/TLR9 pathway in macrophages. Transl Res 2025:S1931-5244(25)00053-2. [PMID: 40409587 DOI: 10.1016/j.trsl.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Secreted frizzled related protein 5 (sFRP5), an anti-inflammatory adipokine, plays a crucial role in various diseases, and its serum levels are low in patients with coronary artery disease (CAD). However, its role in atherosclerosis remains unclear. Therefore, we investigated the correlation between sFRP5 and plaque stability, along with the molecular mechanisms underlying atherosclerosis. In patients with CAD, serum sFRP5 levels were positively correlated with plaque stability, a predictor of thin-cap fibroatheromas (TCFAs). Recombinant sFRP5 (r-sFRP5) supplementation significantly increased plaque stability and ameliorated atherosclerosis progression in ApoE-/- mice. Aortic RNA-sequencing (RNA-seq) revealed sFRP5-mediated regulation in inflammatory cells. Our experiments confirmed that sFRP5 inhibits inflammation and macrophage migration. Mechanistically, Toll-like receptor 9 (TLR9) was identified as a downstream target of sFRP5, and sFRP5 suppressed TLR9 expression by decreasing c-Jun N-terminal kinase (JNK) phosphorylation. These findings suggest that serum sFRP5 levels are associated with plaque stability and play a protective role in atherosclerosis by attenuating inflammation and macrophage infiltration via inhibition of the JNK/TLR9 pathway, thereby ameliorating the progression of atherosclerosis. This study highlights the potential of sFRP5 as both a biomarker and therapeutic target for plaque stability in atherosclerosis.
Collapse
Affiliation(s)
- Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Fei Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Jiasheng Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Chengpeng Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| |
Collapse
|
2
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Lin Y, Liao J, Chong Y. Identification of the shared gene signatures and biological mechanism in type 2 diabetes mellitus and hepatocellular carcinoma. Clin Exp Hepatol 2025; 11:34-44. [PMID: 40303585 PMCID: PMC12035708 DOI: 10.5114/ceh.2025.148439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 05/02/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is closely related to hepatocellular carcinoma (HCC). The pathophysiological mechanism of coexistence of T2DM and HCC is unclear. The study aimed to investigate the core genes and pathways involved in the development and progression of T2DM and HCC. Material and methods Datasets for T2DM and HCC were downloaded from the GEO to screen differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis was performed on these DEGs to explore their functions and verify hub genes. These genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR) and UALCAN analysis based on The Cancer Genome Atlas (TCGA). Finally, the transcription factor (TF)-miRNA-target gene network was constructed with hub genes, and visualized using Cytoscape software 3.6.1. Results A total of 77 common DEGs were identified. KEGG enrichment revealed that pathways of metabolic processes are enriched in T2DM and HCC. Combining the results of MCODE and CytoHubba showed that AASS, SDS, HAL, KYNU and TDO2 were hub genes. Then, we verified the above results by UALCAN analysis and qRT-PCR. Compared with normal liver tissues, the expression levels of 5 hub genes based on tumor grade were lower in liver hepatocellular carcinoma (LIHC) tissues. mRNA levels of these genes were significantly down-regulated in HepG2 and SNU-449 compared with LO2 cells. Furthermore, we depicted the TF-miRNA-gene interaction network. Conclusions This study proposed a strategy for exploring pathogenic mechanisms of T2DM and HCC. Network hub genes hold promise as disease status biomarkers and treatment targets for alleviating both T2DM and HCC.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Jiasheng Liao
- Department of General Surgery, Shantou Second People’s Hospital, Shantou, China
| | - Yutian Chong
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, China
| |
Collapse
|
4
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 in Astrocyte Endfeet After Cerebral Ischemia. Int J Mol Sci 2025; 26:309. [PMID: 39796165 PMCID: PMC11720067 DOI: 10.3390/ijms26010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/13/2025] Open
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the endfoot translatome after ischemia. The main biological processes associated with these differentially expressed genes included proteostasis, inflammation, cell cycle/death, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b, which encode the inducible HSP70. Using qPCR, Western blot, and immunohistochemistry, we confirmed that HSP70 is upregulated in astrocyte endfeet after ischemia. This coincided with an increase in ubiquitination across the proteome that suggests that ischemia induces a disruption in proteostasis in astrocyte endfeet. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfoot function and BBB integrity after ischemic stroke.
Collapse
Affiliation(s)
- Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 20201, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Riccardo Serra
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA; (B.S.); (C.T.); (R.S.); (N.T.); (K.K.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
5
|
Zhang X, Zuo L, Song X, Zhang W, Yang Z, Wang Z, Guo Y, Ge S, Wang L, Wang Y, Geng Z, Li J, Hu J. The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease. iScience 2024; 27:111517. [PMID: 39759008 PMCID: PMC11699250 DOI: 10.1016/j.isci.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells. This study elucidates possible mechanisms by which mesenteric adipokines influence the progression of enteritis and provides a new theoretical basis for the treatment of CD via the mesenteric pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Yibing Guo
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Sitang Ge
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 In Astrocyte Endfeet After Cerebral Ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617236. [PMID: 39416227 PMCID: PMC11482819 DOI: 10.1101/2024.10.08.617236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier (BBB) integrity which are normally maintained by the astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent model of cerebral ischemia-reperfusion. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the translatome after ischemia. Pathways associated with the differential expressions included proteostasis, inflammation, cell cycle, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b , which encode the inducible HSP70. We found that HSP70 is upregulated in astrocyte endfeet after ischemia, coinciding with an increase in ubiquitination across the proteome. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfeet function and BBB integrity after ischemic stroke.
Collapse
|
7
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Zhang M, Li G, Li K, Gao Z, Yin C, Zeng F, Yang H, Dong W, Zhou G, Pan W, Wang Y, Jin J. Prognostic significance of serum secreted frizzled-related protein 5 in patients with acute aortic dissection. Heliyon 2024; 10:e35905. [PMID: 39253195 PMCID: PMC11382199 DOI: 10.1016/j.heliyon.2024.e35905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Background Secreted frizzled-related protein 5 (SFRP5) is a novel adipokine that has been found to be closely associated with metabolic and cardiovascular diseases. We investigated serum SFRP5 levels during the acute phase and their predictive value for the prognosis of acute aortic dissection (AAD). Methods In total, 152 AAD patients and 164 controls were enrolled in this study. Serum SFRP5 levels were measured using an enzyme-linked immunosorbent assay (ELISA). AAD patients were divided into high-SFRP5 and low-SFRP5 groups based on the optimal cutoff value and followed up for prognosis. The primary endpoint was all-cause mortality, and the secondary endpoint focused on AAD-related events (including AAD-related mortality and unplanned reoperations). Results Serum SFRP5 levels were significantly higher in AAD patients than in non-AAD controls, regardless of whether they had Stanford type A or B AD. Multivariate logistic regression analysis revealed an independent association between SFRP5 and the presence of AAD (adjusted OR 1.267, 95 % CI 1.152-1.394; p < 0.001). The receiver operating characteristic curve demonstrated that the optimal cutoff value for SFRP5 to predict the presence of AAD was 10.26 ng/mL (AUC 0.7241, sensitivity 49.34 %, specificity 87.20 %). Notably, serum SFRP5 levels of patients in the death group were significantly higher than those in the survival group. Compared with patients in the low-SFRP5 group, those in the high-SFRP5 group exhibited a significantly increased risk of all-cause mortality (HR 9.540, 95 % CI 2.803-32.473; p < 0.001) and AAD-related events (HR 6.915, 95 % CI 2.361-20.254; p < 0.001) during the follow-up period. Conclusion Serum SFRP5 levels were significantly elevated in the acute phase of AAD, and high serum SFRP5 levels were independently associated with poor AAD prognosis. These results suggest that serum SFRP5 level during the acute phase may be an effective biomarker and therapeutic target for the prognosis of AAD.
Collapse
Affiliation(s)
- Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Zhichun Gao
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Chun Yin
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Fangzheng Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Wang Dong
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| |
Collapse
|
9
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
10
|
Ji XF, Zhou Q, Wang JW, Sun F, Gao S, Wang K. Associations of Wnt5a expression with liver injury in chronic hepatitis B virus infection. BMC Infect Dis 2023; 23:860. [PMID: 38062395 PMCID: PMC10704684 DOI: 10.1186/s12879-023-08865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.
Collapse
Affiliation(s)
- Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Qi Zhou
- Department of Pediatric Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Fei Sun
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Hepatology Institute of Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
Song Y, Ma Y, Zhang K, Zhang W, Xiong G, Qi T, Shi J, Qiu H, Zhang J, Han F, Kan C, Sun X. Secreted frizzled-related protein 5: A promising therapeutic target for metabolic diseases via regulation of Wnt signaling. Biochem Biophys Res Commun 2023; 677:70-76. [PMID: 37549604 DOI: 10.1016/j.bbrc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Metabolic diseases pose a significant global health challenge, characterized by an imbalance in metabolism and resulting in various complications. Secreted frizzled-related protein 5 (SFRP5), an adipokine known for its anti-inflammatory properties, has gained attention as a promising therapeutic target for metabolic diseases. SFRP5 acts as a key regulator in the Wnt signaling pathway, exerting its influence on critical cellular functions including proliferation, differentiation, and migration. Its significance extends to the realm of adipose tissue biology, where it plays a central role in regulating inflammation, insulin resistance, adipogenesis, lipid metabolism, glucose homeostasis, and energy balance. By inhibiting Wnt signaling, SFRP5 facilitates adipocyte growth, promotes lipid accumulation, and contributes to a decrease in oxidative metabolism. Lifestyle interventions and pharmacological treatments have shown promise in increasing SFRP5 levels and protecting against metabolic abnormalities. SFRP5 is a pivotal player in metabolic diseases and presents itself as a promising therapeutic target. An overview of SFRP5 and its involvement in metabolic disorders and metabolism is provided in this comprehensive review. By elucidating these aspects, valuable insights can be gained to foster the development of effective strategies in combating metabolic diseases.
Collapse
Affiliation(s)
- Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
12
|
Rai V, Le H, Agrawal DK. Novel mediators regulating angiogenesis in diabetic foot ulcer healing. Can J Physiol Pharmacol 2023; 101:488-501. [PMID: 37459652 DOI: 10.1139/cjpp-2023-0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A non-healing diabetic foot ulcer (DFU) is a debilitating clinical problem amounting to socioeconomic and psychosocial burdens. DFUs increase morbidity due to prolonged treatment and mortality in the case of non-treatable ulcers resulting in gangrene and septicemia. The overall amputation rate of the lower extremity with DFU ranges from 3.34% to 42.83%. Wound debridement, antibiotics, applying growth factors, negative pressure wound therapy, hyperbaric oxygen therapy, topical oxygen, and skin grafts are common therapies for DFU. However, recurrence and nonhealing ulcers are still major issues. Chronicity of inflammation, hypoxic environment, poor angiogenesis, and decreased formation of the extracellular matrix (ECM) are common impediments leading to nonhealing patterns of DFUs. Angiogenesis is crucial for wound healing since proper vessel formation facilitates nutrients, oxygen, and immune cells to the ulcer tissue to help in clearing out debris and facilitate healing. However, poor angiogenesis due to decreased expression of angiogenic mediators and matrix formation results in nonhealing and ultimately amputation. Multiple proangiogenic mediators and vascular endothelial growth factor (VEGF) therapy exist to enhance angiogenesis, but the results are not satisfactory. Thus, there is a need to investigate novel pro-angiogenic mediators that can either alone or in combination enhance the angiogenesis and healing of DFUs. In this article, we critically reviewed the existing pro-angiogenic mediators followed by potentially novel factors that might play a regulatory role in promoting angiogenesis and wound healing in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
13
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Chen J, Gao F, Li D, Wang J. MiR26-5p inhibits pathological pulmonary microvascular angiogenesis via down-regulating WNT5A. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:812-819. [PMID: 37396938 PMCID: PMC10311967 DOI: 10.22038/ijbms.2023.68856.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 07/04/2023]
Abstract
Objectives Pathological micro angiogenesis is a key pathogenic factor in pulmonary diseases such as pulmonary hypertension and hepatopulmonary syndrome. More and more pieces of evidence show that excessive proliferation of pulmonary microvascular endothelial cells is the key event of pathological micro angiogenesis. The purpose of this research is to reveal the mechanism of miR26-5p regulating pulmonary microvascular hyperproliferation. Materials and Methods Hepatopulmonary syndrome rat model was made by common bile duct ligation. HE and IHC staining were used for analysis of the pathology of the rat. CCK8, transwell, and wound healing assay were used to assess miR26-5p or target gene WNT5A functioned toward PMVECs. microRNA specific mimics and inhibitors were used for up/down-regulated miR26-5p expression in PMVECs. Recombinant lentivirus was used for overexpression/knockdown WNT5A expression in PMVECs. And the regulation relationship of miR26-5p and WNT5A was analyzed by dual-luciferase reporter assay. Results qPCR showed that miR26-5p was significantly down-regulated in the course of HPS disease. Bioinformatics data showed that WNT5A was one of the potential key target genes of miR26-5p. Immunohistochemistry and qPCR analysis showed that WNT5A was largely expressed in pulmonary microvascular endothelial cells, in addition, this molecule was significantly up-regulated with the progression of the disease. Furthermore, dual luciferase reporter assay showed that miR26-5p could bind to WNT5A 3 'UTR region to inhibit WNT5A synthesis. Conclusion The results suggested MiR26-5p negatively regulated PMVECs proliferation and migration by WNT5A expression. Overexpression of miR26-5p may be a potentially beneficial strategy for HPS therapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anesthesiology, People’s Hospital of Chongqing Banan District, Chongqing 401320, China
- These authors contributed equally to this work
| | - Feng Gao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400038, China
- These authors contributed equally to this work
| | - Dan Li
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jinquan Wang
- Department of Anesthesiology, The Ninth People’s Hospital of Chongqing, Chongqing 400700, China
| |
Collapse
|