1
|
Bisogni G, Conte A, Costantino U, Lattante S, Bernardo D, Lucioli G, Patanella AK, Cimbolli P, Del Giudice E, Vettor F, Marangi G, Doronzio PN, Zollino M, Sabatelli M. Exploring the Role of CCNF Variants in Italian ALS Patients. Genes (Basel) 2024; 15:1566. [PMID: 39766833 PMCID: PMC11727902 DOI: 10.3390/genes15121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Objectives: Variants in Cyclin F (CCNF) have been associated to amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) in a group of cases. The objectives of this study were to determine the contribution of CCNF in a large cohort of Italian ALS patients, to look for genotype-phenotype correlation of the mutations and to evaluate the CCNF-associated clinical features. Methods: We applied next-generation sequencing technologies on 971 unrelated Italian ALS patients and we filtered results to look for variants in CCNF gene. Results: We identified 13 rare missense variants in 16 index cases (2 familial and 14 sporadic), with a cumulative mutational frequency of 1.6%. The most prevalent variant was p.Phe197Leu, found in three patients. The clinical presentation was heterogeneous, with a classic phenotype in eight patients, upper motor neuron dominant (UMN-D) phenotype in four patients, and flail arm in four patients. Clinical evaluation for cognitive impairment was performed in 13 patients using the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) test, demonstrating that almost half of the patients (n = 6) had variable degrees of frontal dysfunction. Discussion: In our cohort, we observed CCNF variants in 1.6% of patients (16/971), a percentage similar to that found in other series. Clinical presentation is heterogeneous, but CCNF variants are significantly associated to cognitive impairment. Conclusions: Our study expands the CCNF genetic variant spectrum in a large cohort of Italian ALS patients. Further studies are needed to assess genotype-phenotype associations of CCNF variants and to specify the role of each variant, which are quite common, especially in sALS patients.
Collapse
Affiliation(s)
- Giulia Bisogni
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Amelia Conte
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Umberto Costantino
- Neurology Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Serena Lattante
- Department of Experimental Medicine, Università del Salento, 73100 Lecce, Italy;
| | - Daniela Bernardo
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Gabriele Lucioli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Agata Katia Patanella
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Paola Cimbolli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
| | - Elda Del Giudice
- Research & Innovation (R&I Genetics) Srl, 35127 Padova, Italy; (E.D.G.); (F.V.)
| | - Federica Vettor
- Research & Innovation (R&I Genetics) Srl, 35127 Padova, Italy; (E.D.G.); (F.V.)
| | - Giuseppe Marangi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Niccolò Doronzio
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcella Zollino
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.M.); (P.N.D.); (M.Z.)
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Sabatelli
- Centro Clinico NeMO Adulti, Fondazione Serena Onlus-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.C.); (D.B.); (G.L.); (A.K.P.); (P.C.); (M.S.)
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Zhao B, Jiang Q, Lin J, Wei Q, Li C, Hou Y, Cao B, Zhang L, Ou R, Liu K, Yang T, Xiao Y, Huang R, Shang H. Genetic and Phenotypic Spectrum of Amyotrophic Lateral Sclerosis Patients with CCNF Variants from a Large Chinese Cohort. Mol Neurobiol 2023; 60:4150-4160. [PMID: 37171577 DOI: 10.1007/s12035-023-03380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Cyclin F (CCNF) variants have been found to be associated with amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). However, the genetic and clinical characteristics of ALS patients who carry CCNF variants are largely unknown. Genetic analysis was performed for 1587 Chinese ALS patients, and missense variants were predicted by software analyses. Additionally, we searched PubMed, Embase, and Web of Science for relevant literature and conducted a meta-analysis of the frequency of variants. In our ALS cohort, we identified 29 nonsynonymous variants in 41 ALS patients. Among these ALS patients, 18 (1.1%) were carriers of 15 rare missense variants that were considered probably pathogenic variants, and 11 of 15 variants were novel. Seven relevant studies were identified, and a total of 43 CCNF variants in 59 ALS patients with a frequency of 0.8% were reported. The ratio of males to females in our cohort (10/8) was similar to that in Caucasian populations (4/7) and significantly higher than that in Asian populations (10/1). The proportion of bulbar onset in Caucasian CCNF carriers was similar to our cohort (25.0 vs. 27.8%); however, bulbar onset had never been reported in previous Asian studies (0/11). FTD was not found in CCNF carriers in previous Asian studies and our cohort, but it has been reported in a FALS cohort (1/75) of Caucasian individuals. There were some differences in the clinical characteristics among different ethnic ALS populations. More basic scientific studies are needed to elucidate the pathogenic mechanisms and genotype-phenotype associations of CCNF variants.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
van Hummel A, Sabale M, Przybyla M, van der Hoven J, Chan G, Feiten AF, Chung RS, Ittner LM, Ke YD. TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models. Neuropathol Appl Neurobiol 2023; 49:e12902. [PMID: 36951214 PMCID: PMC10946706 DOI: 10.1111/nan.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is characterised by a progressive loss of upper and lower motor neurons leading to muscle weakness and eventually death. Frontotemporal dementia (FTD) presents clinically with significant behavioural decline. Approximately 10% of cases have a known family history, and disease-linked mutations in multiple genes have been identified in FTD and ALS. More recently, ALS and FTD-linked variants have been identified in the CCNF gene, which accounts for an estimated 0.6% to over 3% of familial ALS cases. METHODS In this study, we developed the first mouse models expressing either wild-type (WT) human CCNF or its mutant pathogenic variant S621G to recapitulate key clinical and neuropathological features of ALS and FTD linked to CCNF disease variants. We expressed human CCNF WT or CCNFS621G throughout the murine brain by intracranial delivery of adeno-associated virus (AAV) to achieve widespread delivery via somatic brain transgenesis. RESULTS These mice developed behavioural abnormalities, similar to the clinical symptoms of FTD patients, as early as 3 months of age, including hyperactivity and disinhibition, which progressively deteriorated to include memory deficits by 8 months of age. Brains of mutant CCNF_S621G mice displayed an accumulation of ubiquitinated proteins with elevated levels of phosphorylated TDP-43 present in both CCNF_WT and mutant CCNF_S621G mice. We also investigated the effects of CCNF expression on interaction targets of CCNF and found elevated levels of insoluble splicing factor proline and glutamine-rich (SFPQ). Furthermore, cytoplasmic TDP-43 inclusions were found in both CCNF_WT and mutant CCNF_S621G mice, recapitulating the key hallmark of FTD/ALS pathology. CONCLUSIONS In summary, CCNF expression in mice reproduces clinical presentations of ALS, including functional deficits and TDP-43 neuropathology with altered CCNF-mediated pathways contributing to the pathology observed.
Collapse
Affiliation(s)
- Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Miheer Sabale
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Magdalena Przybyla
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Astrid F. Feiten
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of MedicineLudwig‐Maximilians‐Universität MünchenMunich81377Germany
| | - Roger S. Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yazi D. Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
4
|
MEKs/ERKs-mediated FBXO1/E2Fs interaction interference modulates G 1/S cell cycle transition and cancer cell proliferation. Arch Pharm Res 2023; 46:44-58. [PMID: 36607545 DOI: 10.1007/s12272-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.
Collapse
|
5
|
You FL, Xia GF, Cai J. Behavioural Variant Frontotemporal Dementia due to CCNF Gene Mutation: A Case Report. Curr Alzheimer Res 2023; 20:371-378. [PMID: 37872794 DOI: 10.2174/1567205020666230811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Frontal, temporal lobe dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases. Studies have found that CCNF mutations have been found in patients with familial and sporadic ALS and FTD. Behavioural variant frontotemporal dementia (bvFTD) is a clinical syndrome characterized by progressive deterioration of personality, social behaviour, and cognitive function, which is most closely related to genetic factors. As the early symptoms of bvFTD are highly heterogeneous, the condition is often misdiagnosed as Alzheimer's disease or psychiatric disorders. In this study, a bvFTD patient had a CCNF gene mutation, which led to ubiquitinated protein accumulation and ultimately caused neurodegenerative disease. Genetic detection should be improved urgently for bvFTD patients and family members to provide a clinical reference for early diagnosis of frontotemporal dementia. CASE PRESENTATION In this case, the patient was 65 years old with an insidious onset, early-onset memory loss, a significant decline in the episodic memory, an early AD diagnosis, and oral treatment with donepezil hydrochloride for 3 years with poor efficacy, followed by a change to oral memantine hydrochloride tablets, which controlled the condition for several months. His medication was switched to sodium oligomannate capsules, and his condition was gradually controlled, but no significant improvement was observed. After spontaneous drug withdrawal, the patient's condition progressed rapidly; therefore, he visited our hospital and underwent neuropsychological tests for moderate to severe cognitive impairment. AD cerebrospinal fluid markers showed no significant abnormalities, and cranial MRI revealed frontotemporal lobe atrophy and decreased hippocampal volume. Genetic testing for the presence of the CCNF gene revealed a c.1532C > A (p. T511N) heterozygous variant, which might be a diagnostic criterion for bvFTD. Therefore, the patient's symptoms recurred after transient improvement with the combination of donepezil, oral memantine hydrochloride tablets, and sodium oligomannate, but his overall condition was improved compared to that before, and this treatment regimen was continued to observe changes during the follow-up. CONCLUSION The early clinical manifestations of bvFTD are complex and variable, and the condition is easily misdiagnosed, thus delaying treatment. Therefore, for patients with a high clinical suspicion of FTD, in addition to a detailed understanding of their medical history and family history and improvement of relevant examinations, genetic testing should be performed as early as possible to help confirm the diagnosis. For diseases closely related to genes, genetic testing of other family members should be optimised as much as possible to allow early diagnosis and intervention and guide fertility in the next generation.
Collapse
Affiliation(s)
- Feng-Ling You
- Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Gao-Fu Xia
- Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jing Cai
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| |
Collapse
|
6
|
Siebert A, Gattringer V, Weishaupt JH, Behrends C. ALS-linked loss of Cyclin-F function affects HSP90. Life Sci Alliance 2022; 5:5/12/e202101359. [PMID: 36114006 PMCID: PMC9481933 DOI: 10.26508/lsa.202101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Analysis of ALS patient cell lines and cyclin-F overexpression and knockout cells identified HSP90AB1 as novel SCFcyclin-F substrate pointing to a loss-of-function mechanism for ALS CCNF mutations. The founding member of the F-box protein family, Cyclin-F, serves as a substrate adaptor for the E3 ligase Skp1-Cul1-F-box (SCF)Cyclin-F which is responsible for ubiquitination of proteins involved in cell cycle progression, DNA damage and mitotic fidelity. Missense mutations in CCNF encoding for Cyclin-F are associated with amyotrophic lateral sclerosis (ALS). However, it remains elusive whether CCNF mutations affect the substrate adaptor function of Cyclin-F and whether altered SCFCyclin-F–mediated ubiquitination contributes to pathogenesis in CCNF mutation carriers. To address these questions, we set out to identify new SCFCyclin-F targets in neuronal and ALS patient–derived cells. Mass spectrometry–based ubiquitinome profiling of CCNF knockout and mutant cell lines as well as Cyclin-F proximity and interaction proteomics converged on the HSP90 chaperone machinery as new substrate candidate. Biochemical analyses provided evidence for a Cyclin-F–dependent association and ubiquitination of HSP90AB1 and implied a regulatory role that could affect the binding of a number of HSP90 clients and co-factors. Together, our results point to a possible Cyclin-F loss-of-function–mediated chaperone dysregulation that might be relevant for ALS.
Collapse
Affiliation(s)
- Alexander Siebert
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Vanessa Gattringer
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| |
Collapse
|
7
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Su WM, Gu XJ, Duan QQ, Jiang Z, Gao X, Shang HF, Chen YP. Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC Med 2022; 20:209. [PMID: 35754054 PMCID: PMC9235235 DOI: 10.1186/s12916-022-02411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The time of survival in patients with amyotrophic lateral sclerosis (ALS) varies greatly, and the genetic factors that contribute to the survival of ALS are not well studied. There is a lack of a comprehensive study to elucidate the role of genetic factors in the survival of ALS. METHODS The published studies were systematically searched and obtained from PubMed, EMBASE, and the Cochrane Library without any language restrictions from inception to Oct 27, 2021. A network meta-analysis for ALS causative/risk genes and a systematic review and pairwise meta-analysis for other genetic modifiers were conducted. The PROSPERO registration number: CRD42022311646. RESULTS A total of 29,764 potentially relevant references were identified, and 71 papers were eligible for analysis based on pre-decided criteria, including 35 articles in network meta-analysis for 9 ALS causative/risk genes, 17 articles in pairwise meta-analysis for four genetic modifiers, and 19 articles described in the systematic review. Variants in three genes, including ATXN2 (HR: 3.6), C9orf72 (HR: 1.6), and FUS (HR:1.8), were associated with short survival of ALS, but such association was not identified in SOD1, TARDBP, TBK1, NEK1, UBQLN2, and CCNF. In addition, UNC13A rs12608932 CC genotype and ZNF521B rs2275294 C allele also caused a shorter survival of ALS; however, APOE ε4 allele and KIFAP3 rs1541160 did not be found to have any effect on the survival of ALS. CONCLUSIONS Our study summarized and contrasted evidence for prognostic genetic factors in ALS and would help to understand ALS pathogenesis and guide clinical trials and drug development.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
10
|
Jiang Y, Jiao B, Xiao X, Shen L. Genetics of frontotemporal dementia in China. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:321-335. [PMID: 33538206 DOI: 10.1080/21678421.2021.1880596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Backgbround: Frontotemporal dementia (FTD) is the second most common presenile dementia, characterized by prominent behavioral, language, and cognitive impairment, which has a strong genetic component contributing to its pathogenesis. Due to geographical and ethnic variability, the prevalence of the causative genes of FTD may be different. Methods: To explore the genetics of FTD in the Chinese population, we reviewed 97 closely related studies that were searched in PubMed and Web of Science. In this review, we summarized the characteristics of each FTD gene. We also reassessed their pathogenicity and revised some mutations from pathogenic to uncertain significance according to the American College of Medical Genetics and Genomics (ACMG). Results: Thirty-two rare variants in genes of MAPT, GRN, C9orf72, CHCHD10, VCP, and TBK1 were identified in Chinese FTD populations, including 25 pathogenic mutations and seven variants of uncertain significance (VUS). Among them, the frequency of rare variants in the CHCHD10 gene was the highest. Surprisingly, twelve variants reported as pathogenic mutations were revised as VUS by ACMG. The correlations between genes and clinical manifestations were MAPT and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), GRN and frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP), C9orf72/CHCHD10/TBK1 and amyotrophic lateral sclerosis (ALS)-FTD spectrum, and VCP corresponds inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). Conclusions: It is necessary to strictly interpret the contributions of genes to diseases by ACMG. MAPT is the most common pathogenic gene for FTD in China.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China, and
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China, and.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
11
|
Ranganathan R, Haque S, Coley K, Shepheard S, Cooper-Knock J, Kirby J. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurosci 2020; 14:684. [PMID: 32733193 PMCID: PMC7358438 DOI: 10.3389/fnins.2020.00684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two progressive, adult onset neurodegenerative diseases, caused by the cell death of motor neurons in the motor cortex and spinal cord and cortical neurons in the frontal and temporal lobes, respectively. Whilst these have previously appeared to be quite distinct disorders, in terms of areas affected and clinical symptoms, identification of cognitive dysfunction as a component of amyotrophic lateral sclerosis (ALS), with some patients presenting with both ALS and FTD, overlapping features of neuropathology and the ongoing discoveries that a significant proportion of the genes underlying the familial forms of the disease are the same, has led to ALS and FTD being described as a disease spectrum. Many of these genes encode proteins in common biological pathways including RNA processing, autophagy, ubiquitin proteasome system, unfolded protein response and intracellular trafficking. This article provides an overview of the ALS-FTD genes before summarizing other known ALS and FTD causing genes where mutations have been found primarily in patients of one disease and rarely in the other. In discussing these genes, the review highlights the similarity of biological pathways in which the encoded proteins function and the interactions that occur between these proteins, whilst recognizing the distinctions of MAPT-related FTD and SOD1-related ALS. However, mutations in all of these genes result in similar pathology including protein aggregation and neuroinflammation, highlighting that multiple different mechanisms lead to common downstream effects and neuronal loss. Next generation sequencing has had a significant impact on the identification of genes associated with both diseases, and has also highlighted the widening clinical phenotypes associated with variants in these ALS and FTD genes. It is hoped that the large sequencing initiatives currently underway in ALS and FTD will begin to uncover why different diseases are associated with mutations within a single gene, especially as a personalized medicine approach to therapy, based on a patient's genetics, approaches the clinic.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Shaila Haque
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Kayesha Coley
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Stephanie Shepheard
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
13
|
Liu X, He J, Gao FB, Gitler AD, Fan D. The epidemiology and genetics of Amyotrophic lateral sclerosis in China. Brain Res 2018; 1693:121-126. [PMID: 29501653 PMCID: PMC6486791 DOI: 10.1016/j.brainres.2018.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with loss of motor neurons. Previous knowledge of the disease has been mainly based on studies from Caucasian ALS patients of European descent. Here we review the epidemiological characteristics of ALS among the Chinese population in order to compare the similarities and differences between Chinese ALS cases and those from other countries. We describe a potential lower incidence and prevalence of ALS, a younger age of onset and a lower proportion of familial ALS cases in the Chinese population. Additionally, we highlight potential genetic differences between Chinese and Caucasian ALS patients. Most notably, the frequency of GGGGCC repeat expansions in C9ORF72 in Chinese ALS is significantly lower than in Caucasians. Since some conclusions might not be consistent across all of the studies around China to date, we suggest that it is necessary to carry out a prospective population-based study and large-scale gene sequencing around to better define epidemiological and genetic features of Chinese ALS patients.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
14
|
Tian D, Li J, Tang L, Zhang N, Fan D. Screening for CCNF Mutations in a Chinese Amyotrophic Lateral Sclerosis Cohort. Front Aging Neurosci 2018; 10:185. [PMID: 30008669 PMCID: PMC6034086 DOI: 10.3389/fnagi.2018.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
Previous research has identified CCNF mutations in familial (FALS) and sporadic amyotrophic lateral sclerosis (SALS), as well as in frontotemporal dementia (FTD). The aim of our study was to measure the frequency of CCNF mutations in a Chinese population. In total, 78 FALS patients, 581 SALS patients and 584 controls were included. We found 19 missense mutations, nine synonymous mutations and two intron variants. According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines for the interpretation of sequence variants, eight variants were judged to be pathogenic or likely pathogenic variants. The frequency of such variants was 2.56% in FALS and 1.03% in SALS. In conclusion, CCNF mutations are common in FALS and SALS patients of Chinese origin, and further study is still needed.
Collapse
Affiliation(s)
- Danyang Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jiao Li
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
15
|
Nguyen HP, Van Broeckhoven C, van der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet 2018; 34:404-423. [PMID: 29605155 DOI: 10.1016/j.tig.2018.03.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease, characterized genetically by a disproportionately large contribution of rare genetic variation. Driven by advances in massive parallel sequencing and applied on large patient-control cohorts, systematic identification of these rare variants that make up the genetic architecture of ALS became feasible. In this review paper, we present a comprehensive overview of recently proposed ALS genes that were identified based on rare genetic variants (TBK1, CHCHD10, TUBA4A, CCNF, MATR3, NEK1, C21orf2, ANXA11, TIA1) and their potential relevance to frontotemporal dementia genetic etiology. As more causal and risk genes are identified, it has become apparent that affected individuals can carry multiple disease-associated variants. In light of this observation, we discuss the oligogenic architecture of ALS. To end, we highlight emerging key molecular processes and opportunities for therapy.
Collapse
Affiliation(s)
- Hung Phuoc Nguyen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|