1
|
Mbese Z, Choene M, Morifi E, Nwamadi M, Adeyemi S, Kolawole Oyebamiji A, Adeyinka AS, George B, Aderibigbe BA. Hybrid Molecules Containing Methotrexate, Vitamin D, and Platinum Derivatives: Synthesis, Characterization, In Vitro Cytotoxicity, In Silico ADME Docking, Molecular Docking and Dynamics. Chem Biodivers 2025; 22:e202400373. [PMID: 39278836 PMCID: PMC11741164 DOI: 10.1002/cbdv.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Designing hybrid-based drugs is one promising strategy for developing effective anticancer drugs that explore combination therapy to enhance treatment efficacy, overcome the development of drug resistance, and lower treatment duration. Bisphosphonates and Vitamin D are commonly administered drugs for the treatment of bone diseases and the prevention of bone metastases. Platinum-based and methotrexate are widely used anticancer drugs in clinics. However, their use is hampered by adverse side effects. Hybrid-based compounds containing either bisphosphonate, vitamin D, platinum-based, or methotrexate were synthesized and characterized using FTIR, 1H-,31P, 13C-NMR, and UHPLC-HRMS which confirmed their successful synthesis. The hydroxyapatite bone binding assay revealed a promising percentage binding affinity of the bisphosphonate hybrid compounds. In vitro cytotoxicity assays on MCF-7 and HT-29 cell lines revealed a promising cytotoxic effect of hybrid 19 at 50 and 100 μg/mL on HT-29 and hybrid 15 on MCF-7 at 100 μg/mL. Molecular docking and dynamics simulation analysis revealed a binding affinity of -9.70 kcal/mol for hybrid 15 against Human 3 alpha-hydroxysteroid dehydrogenase type 3, showing its capability to inhibit Human 3 alpha-hydroxysteroid dehydrogenase type 3. The Swiss ADME, ProTox-II, GUSAR (General Unrestricted Structure-Activity Relationships), and molecular docking and dynamics studies revealed that these compounds are promising anticancer compounds.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of ChemistryUniversity of Fort HareAlice Campus5700Alice, Eastern CapeSouth Africa
| | - Mpho Choene
- Department of BiochemistryUniversity of JohannesburgKingsway Campus, Auckland Park2006JohannesburgSouth Africa
| | - Eric Morifi
- School of ChemistryMass Spectrometry DivisionUniversity of Witwatersrand2050JohannesburgSouth Africa
| | - M. Nwamadi
- Department of ChemistryUniversity of JohannesburgAuckland Park Campus2006JohannesburgSouth Africa
| | - Samson Adeyemi
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic ScienceFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Adedapo S. Adeyinka
- Research Centre for Synthesis and CatalysisDepartment of Chemical SciencesUniversity of JohannesburgAuckland Park2006JohannesburgSouth Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfontein Campus2028JohannesburgSouth Africa
| | | |
Collapse
|
2
|
Kniha K, Rink L, Wolf J, Möhlhenrich SC, Peters F, Heitzer M, Hölzle F, Modabber A. Host inflammatory response and clinical parameters around implants in a rat model using systemic alendronate and zoledronate acid drug administrations. Sci Rep 2022; 12:4431. [PMID: 35292688 PMCID: PMC8924183 DOI: 10.1038/s41598-022-08308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Implant outcomes in comparison to a natural tooth in a rat model using systemic alendronate and zoledronate acid drug administrations were assessed. Fifty-four Sprague–Dawley rats were randomly allocated into two experimental groups (drug application of zoledronic acid; 0.04 mg/kg intravenously once a week and alendronic acid; 0.2 mg/kg subcutaneously five times a week) and one control group with 18 animals in each group. Drug delivery was conducted for a period of 4 months. After 4 weeks either a zirconia or a titanium implant was immediately inserted in the socket of the first molar of the upper jaw. In vivo investigations included host inflammatory parameters and the implant survival and success rates for up to 3 months. Material incompatibilities against titanium and zirconia nanoparticles were evaluated in vitro after stimulation of rat spleen cells. In vivo, IL-6 release around titanium implants demonstrated significantly higher values in the control group (p = 0.02) when compared to the zoledronic acid group. Around the natural tooth without drug administration, the control group showed higher IL-6 values compared with the alendronic acid group (p = 0.01). In vitro, only lipopolysaccharide and not the implant’s nanoparticles stimulated significant IL-6 and TNFα production. In terms of the primary aim of in vivo and in vitro IL-6 and TNFα measurements, no implant material was superior to the other. No significant in vitro stimulation of rat spleen cells was detected with respect to titanium oxide and zirconium oxide nanoparticles.
Collapse
Affiliation(s)
- Kristian Kniha
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen, Germany
| | - Jana Wolf
- Institute of Immunology, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen, Germany
| | | | - Florian Peters
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marius Heitzer
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital RWTH Aachen, University Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
3
|
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res 2021; 10:1095-1110. [PMID: 32378173 PMCID: PMC7223109 DOI: 10.1007/s13346-020-00770-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malaria is one of the major infectious diseases that remains a constant challenge to human being mainly due to the emergence of drug-resistant strains of parasite and also the availability of drugs, which are non-specific for their pharmacodynamic activity and known to be associated with multiple side effects. The disease has acquired endemic proportions in tropical countries where the hygienic conditions are not satisfactory while the environmental conditions favor the proliferation of parasite and its transmission, particularly through the female anopheles. It is obvious that to square up the problems, there is a need for designing and development of more effective drugs, which can combat the drug-resistant strains of the parasite. Molecular biology of the parasite and its homing into host cellular tropics provide multiple drug targets that could judiciously be considered for engineering and designing of new generation antimalarial drugs and also drug delivery systems. Though the recent reports document that against malaria parasite the vaccine could be developed, nevertheless, due to smart mutational change overs by the parasite, it is able to bypass the immune surveillance. The developed vaccine therefore failed to assure absolute protection against the malarial infection. In the conventional mode of treatment antimalarial drugs, the dose and dosage regimen that is followed at large crops up the contraindicative manifestations, and hence compromising the effective treatment. The emerging trends and new updates in contemporary biological sciences, material sciences, and drug delivery domain have enabled us with the availability of a multitude of mode and modules which could plunge upon the nanotechnology in particular to treat this challenging infection. The nanotechnology-based option may be tuned or customized as per the requirements to mark and target i.e. the infected RBCs, for targeted drug delivery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jain Anamika
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vishwakarma Nikhar
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Gautam Laxmikant
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Shrivastava Priya
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vyas Sonal
- Department of Pathology, Index Medical College, Hospital & Research Centre, Indore, M.P., India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India.
| |
Collapse
|
4
|
Nakamura M, Ueda K, Yamamoto Y, Aoki K, Zhang M, Saito N, Yudasaka M. Ibandronate-Loaded Carbon Nanohorns Fabricated Using Calcium Phosphates as Mediators and Their Effects on Macrophages and Osteoclasts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3701-3712. [PMID: 33406818 DOI: 10.1021/acsami.0c20923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanohorns (CNHs), a type of nanocarbon, have been studied for the application of drug delivery systems (DDSs) because they are easily functionalized, support bone regeneration, can be used to perform photohyperthermia, have low toxicity, and are easily phagocytosed by macrophages. To take advantage of these features of CNHs, we developed a DDS for the local treatment of bone metastasis by loading the antibone resorption drug ibandronate (IBN) onto CNHs. The poor adsorption of IBN onto CNHs due to the weak hydrophilic-hydrophobic interaction was overcome by using calcium phosphates (CaPs) as mediators. In the fabrication process, we used oxidized CNH (OxCNH), which is less hydrophobic, onto which IBN was coprecipitated with CaP from a labile supersaturated CaP solution. OxCNH-CaP-IBN composite nanoparticles exerted stronger cell-suppressive effects than OxCNH and IBN in both murine macrophages (RAW264.7 cells) and osteoclasts (differentiated from RAW264.7 cells). OxCNH-CaP-IBN composite nanoparticles were efficiently phagocytosed by macrophage cells, where they specifically accumulated in lysosomes. The stronger cell-suppressive effects were likely due to intracellular delivery of IBN, i.e., the release of IBN from OxCNH-CaP-IBN composite nanoparticles via dissociation of CaP in the acidic environment of lysosomes. Our findings suggest that OxCNH-CaP-IBN composite nanoparticles are potentially useful for the local treatment of metastatic bone destruction.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuya Ueda
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yumiko Yamamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Minfang Zhang
- CNT Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|