1
|
Wagle SR, Kovacevic B, Sen LY, Diress M, Foster T, Ionescu CM, Lim P, Brunet A, James R, Carvalho L, Mooranian A, Al-Salami H. Revolutionizing drug delivery strategies with probucol to combat oxidative stress in retinal degeneration: A comprehensive review. Eur J Pharm Biopharm 2025; 210:114695. [PMID: 40089074 DOI: 10.1016/j.ejpb.2025.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Localized oxidative stress plays a key role in the development of retinal degenerative diseases, with diabetic retinopathy (DR) being one of them, contributing significantly to this vision-threatening complication of diabetes. Increased oxidative burden leads to dysfunction across various retinal cell types, including vascular endothelial cells, neurons, glial cells and pericytes. Importantly, even after achieving normalized glycemia, the detrimental effects of oxidative stress persist. Nonetheless, growing data highlights the therapeutic potential of antioxidants in safeguarding vision. However, extensive clinical trials using traditional antioxidants have produced mixed results. Therefore, probucol, known for its ability to limit vascular oxidative stress, decrease superoxide generation, and improve endogenous antioxidant activity, is a promising candidate explored in this review. In addition to describing probucol, this review will explore novel therapeutic formulation strategies by incorporating bile acid into probucol-loaded nanoparticles to enhance drug delivery to the posterior segment of the eye for more effective management of DR. The integration of bio-nanotechnology with probucol and bile acids represents a promising avenue for developing effective therapies for DR, addressing the limitations of traditional antioxidant treatments.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Le Yang Sen
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Rebekah James
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
3
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
4
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
5
|
Low-dose nano-gel incorporated with bile acids enhanced pharmacology of surgical implants. Ther Deliv 2023; 14:17-29. [PMID: 36919692 DOI: 10.4155/tde-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.
Collapse
|
6
|
Applications of bile acids as biomaterials-based modulators, in biomedical science and microfluidics. Ther Deliv 2022; 13:591-604. [PMID: 36861306 DOI: 10.4155/tde-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Chronic disorders such as diabetes mellitus are associated with multiple organ dysfunction, including retinopathy, neuropathy, nephropathy, peripheral vascular disease, and vascular disease. Lifelong subcutaneous insulin injections are currently the only treatment option for patients with Type 1 diabetes mellitus, and it poses numerous challenges. Since the breakthrough achieved from the Edmonton protocol in the year 2000, there has been important research to investigate whether islet cell transplantation can achieve long-term normoglycemia in patients without the need for insulin. The use of biopolymeric scaffold to enclose islet cells has also been explored to improve survivability and viability of islet cells. This review paper summarizes the latest research in using biopolymeric scaffolds in islet transplantation and how microfluidic devices can assist.
Collapse
|
7
|
Hu J, Zhang Y, Yi S, Wang C, Huang X, Pan S, Yang J, Yuan G, Tan S, Li H. Lithocholic acid inhibits dendritic cell activation by reducing intracellular glutathione via TGR5 signaling. Int J Biol Sci 2022; 18:4545-4559. [PMID: 35864954 PMCID: PMC9295063 DOI: 10.7150/ijbs.71287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the major antigen-presenting cells and play an important role in autoimmune uveitis. Emerging evidence suggests that bile acids (BAs) regulate DCs maturation. However, the underlying mechanisms by which BAs regulate the function of DCs still need to be clarified. Here, we demonstrate that lithocholic acid (LCA) inhibits the production of pro-inflammatory cytokines and the expression of surface molecules in bone marrow-derived dendritic cells (BMDCs). LCA attenuates the severity of EAU by modulating the maturation of splenic CD11C+MHCIIhigh DCs. Notably, Takeda G-protein coupled receptor 5 (TGR5) deficiency partially reverses the inhibitory effect of LCA on DCs in vitro and in vivo. TGR5 activation also downregulates the NF-κB and MAPK pathways by inhibiting glutathione production and inducing oxidative stress in DCs, which leads to apoptosis and autophagy in DCs. In addition, LCA or INT-777 treatment increases the TGR5 expression in monocyte-derived dendritic cells (MD-DCs) of patients with active BD, whereas both LCA and TGR5 agonists inhibit the activation of MD-DCs. These results suggest that LCA and TGR5 agonists might be potential therapeutic drugs for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Yiting Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Chaokui Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Jinglu Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
8
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Reduced Cytokine Tumour Necrosis Factor by Pharmacological Intervention in a Preclinical Study. Biomolecules 2022; 12:biom12070877. [PMID: 35883432 PMCID: PMC9313251 DOI: 10.3390/biom12070877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent preclinical studies in our laboratory have shown that the bile acid profile is altered during diabetes development and such alteration has been linked to the diabetes-associated inflammatory profile. Hence, this study aimed to investigate if the first-line antidiabetic drug metformin will alter the bile acid profile and diabetes-associated inflammation in a murine model of pre-type 2 diabetes. C57 mice were randomly allocated into three equal groups of eight. Group One was given a low-fat diet (LFD), Group Two was given a high-fat diet (HFD), and Group Three was given an HFD and, upon prediabetes confirmation, daily oral metformin for one month. Blood glucose, glycated haemoglobin, drug concentrations in tissues and faeces, and the inflammatory and bile acid profiles were measured. Metformin showed wide tissue distribution and was also present in faeces. The bile acid profile showed significant alteration due to prediabetes, and although metformin did not completely normalize it, it did exert significant effects on both the bile acid and the inflammatory profiles, suggesting a direct and, to some extent, positive impact, particularly on the diabetes-associated inflammatory profile.
Collapse
|
10
|
Pharmacological Dose-Effect Profiles of Various Concentrations of Humanised Primary Bile Acid in Encapsulated Cells. NANOMATERIALS 2022; 12:nano12040647. [PMID: 35214975 PMCID: PMC8879575 DOI: 10.3390/nano12040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated. Four different concentrations of the BA were prepared, and viable cells were encapsulated and incubated for 2 days. Multiple analyses were carried out including confocal imaging, glucose-induced cellular mitochondrial viability indices, insulin production, inflammatory biomarker analyses and cellular bioenergetics measurements. There was a significant dose-effect with different concentrations of the BA, affecting cellular viability and antioxidant activities, cell functions and insulin release, inflammatory biomarkers, and cellular-bioenergetics at different oxidative stress levels. The results demonstrate that, when encapsulated, the BA CDCA exerts positive pharmacological effects at the cellular level, and such effects are concentration dependent.
Collapse
|
11
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
12
|
Chu N, Ling J, Jie H, Leung K, Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne) 2022; 13:956203. [PMID: 36187096 PMCID: PMC9519995 DOI: 10.3389/fendo.2022.956203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.
Collapse
|
13
|
Mooranian A, Zamani N, Kovacevic B, Ionescu CM, Luna G, Mikov M, Goločorbin-Kon S, Stojanovic G, Kojic S, Al-Salami H. Pharmacological Effects of Secondary Bile Acid Microparticles in Diabetic Murine Model. Curr Diabetes Rev 2022; 18:e062620183199. [PMID: 32589561 DOI: 10.2174/1573399816666200626213735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
AIM Examine bile acids effects in Type 2 diabetes. BACKGROUND In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent antiinflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. OBJECTIVE Hence, this study aimed to examine applications of novel UDCA microparticles in diabetes. METHODS Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. RESULTS UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. CONCLUSION Bile acids modulated the bile profile without affecting blood glucose levels.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad,Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad,Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia,Australia
| |
Collapse
|
14
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
15
|
Mooranian A, Foster T, Ionescu CM, Carey L, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnstone E, Kuthubutheen J, Brown D, Atlas MD, Mikov M, Al-Salami H. The Effects of Primary Unconjugated Bile Acids on Nanoencapsulated Pharmaceutical Formulation of Hydrophilic Drugs: Pharmacological Implications. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4423-4434. [PMID: 34720580 PMCID: PMC8550211 DOI: 10.2147/dddt.s328526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023]
Abstract
Introduction In a recent study, in our laboratory, primary unconjugated bile acids, commonly found in humans, chenodeoxycholic acid (CDCA), have been shown to improve stability of nanoencapsulated lipophilic drugs and improve their release profile after oral administration likely via electrokinetic stabilisation. Hence, this study aimed to examine the effects of CDCA on exerting similar effects on hydrophilic drugs. Methods Various CDCA-based formulations were produced for the orally administered hydrophilic drug, metformin. Analyses of these formulations included electrokinetic potentials, topography, drug and CDCA formulation contents, nano size distribution, heat-induced deformation and outer-core expansion indices, release profiles, shell-resistance ratio, and thermal and chemical indices. With the drug’s main target being pancreatic beta-cells, the formulations’ effects on cell viability, functions and inflammatory profiles were also investigated. Results and Conclusions CDCA-based metformin formulations exhibited improved stability and release profiles via thermal, chemical and electrokinetic effects, which were formulation-dependent suggesting potential applications of CDCA in the oral targeted delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Louise Carey
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Edan Johnstone
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | | | - Daniel Brown
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Marcus D Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| |
Collapse
|
16
|
Chemotherapy-induced hearing loss: the applications of bio-nanotechnologies and bile acid-based delivery matrices. Ther Deliv 2021; 12:723-737. [PMID: 34697955 DOI: 10.4155/tde-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Advancement in the prevention of chemotherapy-induced hearing loss has proposed new nano-based delivery matrices that can target inner ear regions most damaged by chemotherapy. Chemotherapy agents (e.g., cisplatin) induce increased reactive oxygen species formation in the inner ear that damage sensory hair cells and result in irreversible hearing impairment. Exogenous antioxidants (e.g., Probucol and metformin) have been shown to block the formation of these reactive oxygen species. Delivery of these drugs in effective concentrations remains a challenge. Microencapsulation in combination with drug excipients provides one technique to effectively deliver these drugs. This paper investigates the use of probucol and metformin in combination with drug excipients for novel, inner ear, delivery.
Collapse
|
17
|
Polyelectrolytes Formulated with Primary Unconjugated Bile Acid Optimised Pharmacology of Bio-Engineered Implant. Pharmaceutics 2021; 13:pharmaceutics13101713. [PMID: 34684006 PMCID: PMC8538409 DOI: 10.3390/pharmaceutics13101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction. Several studies have shown that different biomaterials and hydrogels comprising various bile acids such as chenodeoxycholic acid (CDCA), as well as excipients such as poly-(styrene)-sulphonate (PSS) and poly-(allyl)-amine (PAA), exhibited positive biological effects on encapsulated viable pancreatic β-cells. Hence, this study aimed to investigate whether incorporating CDCA with PSS and PAA will optimise the functions of encapsulated pancreatic islets post-transplantation in Type 1 diabetes (T1D). Methods. Mice were made T1D, divided into two equal groups, and transplanted with encapsulated islets in PSS-PAA (control) or with CDCA-PSS-PAA (treatment) microcapsules. The effects of transplanted microcapsules on blood glucose, inflammation and the bile acid profile were measured post-transplantation. Results and Conclusion. Compared with control, the treatment group showed better survival rate, improved glycaemic control, and lower inflammatory profile, illustrated by ↓ interleukin 1-β, interleukin-6, interleukin-12, and tumour-necrosis factor-α, and ↓ levels of the bile acid, as well as lithocholic acid in the plasma, liver, large intestine and faeces. The results suggest that CDCA incorporation with PSS-PAA microcapsules exerted beneficial effects on encapsulated islets and resulted in enhanced diabetes treatment, post-transplantation, at the local and systemic levels.
Collapse
|
18
|
The Effects of Accelerated Temperature-Controlled Stability Systems on the Release Profile of Primary Bile Acid-Based Delivery Microcapsules. Pharmaceutics 2021; 13:pharmaceutics13101667. [PMID: 34683960 PMCID: PMC8538769 DOI: 10.3390/pharmaceutics13101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Bile acid-based drug encapsulation for oral delivery has been recently explored in our laboratory and has shown to be beneficial in terms of drug-targeted delivery and release profile, but stability at various temperatures has not previously been examined; hence, this is the aim of this study. Methods: Various types of bile acid-based microcapsules containing the drug metformin were produced and tested for accelerated temperature-controlled profiles, as well as morphology, elemental composition, drug content, resilience, floatability, wettability and release profiles at various pH values. Results: Accelerated temperature-controlled analysis showed negligible effects on morphology, size, or shape at very low temperatures (below 0 °C), while higher temperatures (above 25 °C) caused alterations. Drug contents, morphology and elemental composition remained similar, while wettability and the release profiles showed formulation-dependent effects. Discussion and Conclusion: Results suggest that bile acid-based microcapsules containing metformin are affected by temperature; hence, their shelf life is likely to be affected by storage temperature, all of which have a direct impact on drug release and stability profiles.
Collapse
|
19
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
20
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
21
|
Pharmacological and Biological Study of Microencapsulated Probucol-Secondary Bile Acid in a Diseased Mouse Model. Pharmaceutics 2021; 13:pharmaceutics13081223. [PMID: 34452184 PMCID: PMC8400495 DOI: 10.3390/pharmaceutics13081223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Probucol (PB) is a highly lipophilic drug with potential protective effects on pancreatic β-cells from inflammation and oxidation. PB has poor bioavailability and solubility, and despite many attempts, significant improvement in antidiabetic effects or absorption has yet to be discovered. Recently, the role of bile acids has been established in significant drug formulation stabilisation effects and as cell-penetrating agents. Promising results in pharmaceutical formulation studies on drug stability and release patterns when lithocholic acid (LCA) is conjugated with PB and sodium alginate (SA) have been demonstrated. Thus, this study aimed to develop and characterise PB microcapsules incorporating LCA and examine the biological effects of the microcapsules in vitro and in vivo. PB/LCA microcapsules were prepared using an encapsulation method, ionic gelation vibrational jet flow technology. LCA incorporation in PB microcapsules showed positive effects on β-cells with improved insulin release, antioxidant activity, and PB intracellular uptake. Diabetic mice gavaged LCA-PB microcapsules showed a significant reduction in diabetes signs and symptoms, better survival rate, reduced blood glucose levels, and pro-inflammatory cytokines, with an increase PB level in blood and tissues suggesting a potential therapy for treating diabetes mellitus.
Collapse
|
22
|
Mooranian A, Foster T, Ionescu CM, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnston E, Wong E, Atlas MD, Mikov M, Al-Salami H. Enhanced Bilosomal Properties Resulted in Optimum Pharmacological Effects by Increased Acidification Pathways. Pharmaceutics 2021; 13:pharmaceutics13081184. [PMID: 34452145 PMCID: PMC8398365 DOI: 10.3390/pharmaceutics13081184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. METHODS Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. RESULTS AND CONCLUSION Capsules' morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Corina M. Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Elaine Wong
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
23
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|
24
|
Wang G, Wu B, Cui Y, Zhang B, Jiang C, Wang H. Teneligliptin Promotes Bile Acid Synthesis and Attenuates Lipid Accumulation in Obese Mice by Targeting the KLF15-Fgf15 Pathway. Chem Res Toxicol 2020; 33:2164-2171. [PMID: 32639145 DOI: 10.1021/acs.chemrestox.0c00192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) play essential physiological roles not only by facilitating the absorption and transport of nutrients but also by acting as a complex molecular signaling system. Reduced levels of BAs have been observed in obesity and other metabolic disorders. In the present study, we explored the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin on BA synthesis, both in vitro and in vivo. In our in vivo experiments, we found that teneligliptin increased the liver, ileal, and serum BA concentrations in mice undergoing teneligliptin treatment for 10 weeks. We further found that in mice fed a high-fat diet, teneligliptin prevented an increase in markers of obesity (body weight, total cholesterol, total triglyceride, adipocyte size) while increasing the total serum and ileal levels of BA. Mechanistically, teneligliptin increased BA synthesis through the alternative synthesis pathway, as the levels of both 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) along with downstream oxysterol 7α-hydroxylase (CYP7B1) but not sterol 12α-hydroxylase (CYP8B1) were increased. Importantly, teneligliptin suppressed the expression of the BA synthesis inhibitory factor Fgf15, which was mediated through phosphatidylinositol 3-kinase (PI3K)/AKT/Krüppel-like factor 15 (KLF15) signaling. Inhibition of KLF15 abolished this effect. Together, our results provide evidence of the potential benefit of teneligliptin in the treatment of metabolic disorders via increased BA production.
Collapse
Affiliation(s)
- Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yang Cui
- Department of Neurology No. 4, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Zhang
- Departments of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chunyan Jiang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
25
|
Wagle SR, Walker D, Kovacevic B, Gedawy A, Mikov M, Golocorbin-Kon S, Mooranian A, Al-Salami H. Micro-Nano formulation of bile-gut delivery: rheological, stability and cell survival, basal and maximum respiration studies. Sci Rep 2020; 10:7715. [PMID: 32382021 PMCID: PMC7205980 DOI: 10.1038/s41598-020-64355-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
Probucol (PB) is a drug that exhibits significant hydrophobicity and substantial intra and inter individual variability in oral absorption, with a miniature bioavailability and complex three compartmental pharmacokinetic modelling due to its high lipid affinity, low stability and high octanol to water partition coefficient. Multiple attempts to formulate PB have not produced satisfactory stable matrices, drug-release profile or rheological flow properties for optimum manufacturing conditions, and with positive and none toxic biological effects. Lithocholic acid (LCA) has recently shown to optimise formulation and cell uptake of drugs. Hence, the aim of this study was to design new PB delivery system, using LCA, and examine its morphology, rheology, stability, and cellular effects. PB was formulated with LCA and sodium alginate (PB-LCA-SA) using various microencapsulation methodologies, and best formulation was investigated in vitro and ex vivo. Using our Ionic Gelation Vibrational Jet flow technology, PB-LCA-SA microcapsules showed good stability and significantly enhanced cell viability, cellular respiration, and reduced inflammation suggesting potential LCA applications in PB delivery and biological effects.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Ahmed Gedawy
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
26
|
Histological effects of pharmacologically active human bile acid nano/micro-particles in Type-1 diabetes. Ther Deliv 2020; 11:157-171. [PMID: 32046598 DOI: 10.4155/tde-2019-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Gliclazide (G) is a drug prescribed for Type 2 diabetics, although recent studies suggest it has desirable effects in both types of diabetes, Type 1 diabetes and Type 2 diabetes. G has an inconsistent absorption due to poor formulation and bile acids (BAs) have shown significant promise in drug formulation optimization. Hence, the study aimed to examine G effects on histopathological, anti-inflammatory and antidiabetic effects when encapsulated with BAs. Materials & methods: Rats were randomized into eight groups, of which seven were made Type 1 diabetes and treated with various BA-based treatments. Tissue histopathology, inflammation and the bile acid profile were analyzed. Results & conclusion: G capsules showed no histological but the most anti-inflammatory effects, which suggest significant beneficial effects in diabetes treatment.
Collapse
|
27
|
Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci Rep 2020; 10:106. [PMID: 31919411 PMCID: PMC6952395 DOI: 10.1038/s41598-019-53999-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
The antilipidemic drug, probucol (PB), has demonstrated potential applications in Type 2 diabetes (T2D) through its protective effects on pancreatic β-cells. PB has poor solubility and bioavailability, and despite attempts to improve its oral delivery, none has shown dramatic improvements in absorption or antidiabetic effects. Preliminary data has shown potential benefits from bile acid co-encapsulation with PB. One bile acid has shown best potential improvement of PB oral delivery (ursodeoxycholic acid, UDCA). This study aimed to examine PB and UDCA microcapsules (with UDCA microcapsules serving as control) in terms of the microcapsules’ morphology, biological effects ex vivo, and their hypoglycemic and antilipidemic and anti-inflammatory effects in vivo. PBUDCA and UDCA microcapsules were examined in vitro (formulation studies), ex vivo and in vivo. PBUDCA microcapsules exerted positive effects on β-cells viability at hyperglycemic state, and brought about hypoglycemic and anti-inflammatory effects on the prediabetic mice. In conclusion, PBUDCA co-encapsulation have showed beneficial therapeutic impact of dual antioxidant-bile acid effects in diabetes treatment.
Collapse
|
28
|
Mooranian A, Zamani N, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. Bio Micro-Nano Technologies of Antioxidants Optimised Their Pharmacological and Cellular Effects, ex vivo, in Pancreatic β-Cells. Nanotechnol Sci Appl 2020; 13:1-9. [PMID: 32021126 PMCID: PMC6954832 DOI: 10.2147/nsa.s212323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction Recent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA). Material and methods Six formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells. Results and discussion UDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM. Conclusion UDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Mooranian A, Zamani N, Takechi R, Luna G, Mikov M, Goločorbin-Kon S, Kovacevic B, Arfuso F, Al-Salami H. Modulatory Nano/Micro Effects of Diabetes Development on Pharmacology of Primary and Secondary Bile Acids Concentrations. Curr Diabetes Rev 2020; 16:900-909. [PMID: 32013849 DOI: 10.2174/1389450121666200204115121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have suggested that hyperglycaemia influences the bile acid profile and concentrations of secondary bile acids in the gut. INTRODUCTION This study aimed to measure changes in the bile acid profile in the gut, tissues, and faeces in type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). METHODS T1D and T2D were established in a mouse model. Twenty-one seven-weeks old balb/c mice were randomly divided into three equal groups, healthy, T1D and T2D. Blood, tissue, urine and faeces samples were collected for bile acid measurements. RESULTS Compared with healthy mice, T1D and T2D mice showed lower levels of the primary bile acid, chenodeoxycholic acid, in the plasma, intestine, and brain, and higher levels of the secondary bile acid, lithocholic acid, in the plasma and pancreas. Levels of the bile acid ursodeoxycholic acid were undetected in healthy mice but were found to be elevated in T1D and T2D mice. CONCLUSION Bile acid profiles in other organs were variably influenced by T1D and T2D development, which suggests similarity in effects of T1D and T2D on the bile acid profile, but these effects were not always consistent among all organs, possibly since feedback mechanisms controlling enterohepatic recirculation and bile acid profiles and biotransformation are different in T1D and T2D.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Ryu Takechi
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Mooranian A, Zamani N, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharm J 2019; 28:165-171. [PMID: 32042255 PMCID: PMC7000308 DOI: 10.1016/j.jsps.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs) are amphiphilic compounds and of recently have demonstrated wide range of formulation stabilizing effects. A recent study showed that primary un-metabolised bile acids (PUBAs) have β-cell protective effects, and synergistic antidiabetic effects when combined with antioxidant and anti-inflammatory drugs, such as probucol (PB). Thus, this study aimed to design and test microcapsules containing a PUBA incorporated with PB and an alginate-Eudragit matrix. Six types of microcapsules were developed without (control) or with (test) PUBA, and tested for internal and external features and β-cell protective effects. The incorporation of PB-alginate-Eudragit with PUBA produced stable microcapsules but did not exert consistent positive effects on cell viability in the hyperglycaemic state, which suggests that PUBA in alginate-Eudragit matrices did not exhibit synergistic effects with PB nor exerted antidiabetic effects.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Formulation buoyancy of nanoencapsulated gliclazide using primary, conjugated and deconjugated bile acids. Ther Deliv 2019; 10:573-583. [PMID: 31646950 DOI: 10.4155/tde-2019-0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Recent studies suggest potential applications of endogenously produced human bile acids as formulation-excipient and drug tissue permeation enhancers in Type 1 diabetes. We aimed to examine the stability, tissue permeation and ex vivo muscle-cell effects of microencapsulated gliclazide (G) incorporated with a primary (chenodeoxycholic acid [CDCA]), a secondary (ursodeoxycholic acid [UDCA]) or a tertiary (taurocholic acid [TCA]) bile acid. Materials & methods: Four formulations made of sodium alginate, CDCA, UDCA and TCA were examined for buoyancy, tissue-enhancing effects (in vivo) and local (ex vivo) viability effects. Results & conclusion: CDCA, UDCA and TCA improved buoyancy and cell viability but not tissue-specific uptake. G-TCA-sodium alginate microcapsules exerted hypoglycemic effects, suggesting significant improvement of G gut-uptake by TCA, possibly via improving buoyancy.
Collapse
|
32
|
Mooranian A, Zamani N, Luna G, Al-Sallami H, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. Bile acid-polymer-probucol microparticles: protective effect on pancreatic β-cells and decrease in type 1 diabetes development in a murine model. Pharm Dev Technol 2019; 24:1272-1277. [PMID: 31557068 DOI: 10.1080/10837450.2019.1665069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies in our laboratory have shown potential applications of the anti-atherosclerotic drug probucol (PB) in diabetes due to anti-inflammatory and β-cell protective effects. The anti-inflammatory effects were optimized by incorporation of the anti-inflammatory bile acid, ursodeoxycholic acid (UDCA). This study aimed to test PB absorption, tissue accumulation profiles, effects on inflammation and type 1 diabetes prevention when combined with UDCA. Balb/c mice were divided into three equal groups and gavaged daily PB powder, PB microcapsules or PB-UDCA microcapsules for one week, at a constant dose. Mice were injected with a single dose of intraperitoneal/subcutaneous alloxan to induce type-1 diabetes and once diabetes was confirmed, treatments were continued for 3 days. Mice were euthanized and blood and tissues collected for analysis of PB and cytokine levels. The PB-UDCA group showed the highest PB concentrations in blood, gut, liver, spleen, brain, and white adipose tissues, with no significant increase in pancreas, heart, skeletal muscles, kidneys, urine or feces. Interferon gamma in plasma was significantly reduced by PB-UDCA suggesting potent anti-inflammatory effects. Blood glucose levels remained similar after treatments, while survival was highest among the PB-UDCA group. Our findings suggest that PB-UDCA resulted in best PB blood and tissue absorption and reduced inflammation.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | | | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad , Novi Sad , Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad , Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|