1
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
2
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Chou YY, Chien JY, Ciou JW, Huang SP. The Protective Effects of n-Butylidenephthalide on Retinal Ganglion Cells during Ischemic Injury. Int J Mol Sci 2022; 23:ijms23042095. [PMID: 35216208 PMCID: PMC8877670 DOI: 10.3390/ijms23042095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision loss, with the associated inflammatory response and oxidative stress being the key factors that cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP) treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group) were administered on seven consecutive days in the rAION model. Rats were evaluated for visual function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina and optic nerve were removed for histological examination after the rats were euthanized. The molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic processes after AION induction and reducing the inflammatory response through which blood-borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of demyelination. Our immunoblotting results revealed the molecular mechanism through which BP mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for ischemic injury.
Collapse
Affiliation(s)
- Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung 472, Taiwan
- Correspondence: ; Tel.: +886-3-8565-301 (ext. 2664)
| |
Collapse
|
4
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
He M, Lin J, Akakuru OU, Xu X, Li Y, Cao Y, Xu Y, Wu A. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:561-571. [PMID: 34258713 DOI: 10.1007/s11427-020-1931-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023]
Abstract
The detection of circulating tumor cells (CTCs) is a crucial tool for early cancer diagnosis, prognosis, and postoperative evaluation. However, detection sensitivity remains a major challenge because CTCs are extremely rare in peripheral blood. To effectively detect CTCs, octahedral Ag2O nanoparticles (NPs) with high dispersibility, good biocompatibility, remarkable surface-enhanced Raman scattering (SERS) enhancement, and obvious enhancement selectivity are designed as an SERS platform. Ag2O NPs with many oxygen vacancy defects are successfully synthesized, which exhibit an ultra-high SERS enhancement factor (1.98×106) for 4-mercaptopyridine molecules. The remarkable SERS activity of octahedral Ag2O NPs is derived from the synergistic effect of the surface defect-promoted photo-induced charge transfer (PICT) process and strong vibration coupling resonance in the Ag2O-molecule SERS complex, greatly amplifying the molecular Raman scattering cross-section. The promoted PICT process is confirmed using ultraviolet-visible (UV-Vis) absorption spectroscopy, demonstrating that obvious PICT resonance occurs in Ag2O SERS system under visible light. An additional growth step of SERS bioprobe is proposed by modifying the Raman signal molecules and functional biological molecules on Ag2O NPs for CTC detection. The Ag2O-based SERS bioprobe exhibits excellent detection specificity for different cancer cells in rabbit blood. Importantly, the high-sensitivity Ag2O-based SERS bioprobe satisfies the requirement for rare CTC detection in the peripheral blood of cancer patients, and the detection limit can reach 1 cell per mL. To our knowledge, this study is the first time that a semiconductor SERS substrate has been successfully utilized in CTC detection. This work provides new insights into CTC detection and the development of novel semiconductor-based SERS platforms for cancer diagnosis.
Collapse
Affiliation(s)
- Meng He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanping Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
6
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
7
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
8
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
9
|
Astanov SK, Kasimova GK, Kurtaliev EN, Nizomov NN, Jumabaev A. Electronic nature and structure of aggregates of riboflavin molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119177. [PMID: 33257239 DOI: 10.1016/j.saa.2020.119177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Aggregation process of riboflavin molecules in binary mixtures: water - dioxane, water - DMSO, and ethanol - isobutanol, were investigated using spectroscopic methods and quantum-chemical calculation. It was shown that at a constant concentration of riboflavin and different ratios of binary mixtures, a deformation of the electronic absorption spectra with a hypochromic effect is observed. The observed changes are caused by the formation of a hydrogen bond and dipole-dipole interaction between riboflavin molecules, which is accompanied by a shift and resonance splitting of excited electronic levels.
Collapse
Affiliation(s)
- Salikh Kh Astanov
- Bukhara Engineering and Technological Institute, Murtazaeva str., 15, 200117 Bukhara, Uzbekistan.
| | - Guzal K Kasimova
- Bukhara Engineering and Technological Institute, Murtazaeva str., 15, 200117 Bukhara, Uzbekistan
| | - Eldar N Kurtaliev
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan.
| | - Negmat N Nizomov
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan
| | - Abduvakhid Jumabaev
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan
| |
Collapse
|
10
|
Piñón-Castillo HA, Martínez-Chamarro R, Reyes-Martínez R, Salinas-Vera YM, Manjarrez-Nevárez LA, Muñoz-Castellanos LN, López-Camarillo C, Orrantia-Borunda E. Palladium Nanoparticles Functionalized with PVP-Quercetin Inhibits Cell Proliferation and Activates Apoptosis in Colorectal Cancer Cells. APPLIED SCIENCES 2021; 11:1988. [DOI: 10.3390/app11051988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Nanotechnology is focused on the development and application of novel nanomaterials with particular physicochemical properties. Palladium nanoparticles (PdNPs) have been used as antimicrobials, antifungals, and photochemicals and for catalytic activity in dye reduction. In the present investigation, we developed and characterized PdNPs as a carrier of quercetin and initiated a study of its effects in colorectal cancer cells. PdNPs were first functionalized with polyvinylpyrrolidone (PVP) and then coupled to quercetin (PdNPs-PVP-Q). Our results showed that quercetin was efficiently incorporated to PdNPs-PVP, as demonstrated using UV/Vis and FT-IR spectroscopy. Using transmission electron microscopy, we demonstrated a reduction in size from 3–14.47 nm of PdNPs alone to 1.8–7.4 nm of PdNPs-PVP and to 2.12–3.14 of PdNPs-PVP-Q, indicating an increase in superficial area in functionalized PdNPs-Q. Moreover, hydrodynamic size studies using dynamic light scattering showed a reduction in size from 2120.33 nm ± 112.53 with PdNPs alone to 129.96 nm ± 6.23 for PdNPs-PVP-Q, suggesting a major reactivity when quercetin is coupled to nanoparticles. X-ray diffraction assays show that the addition of PVP or quercetin to PdNPs does not influence the crystallinity state. Catalytic activity assays of PdNPs-PVP-Q evidenced the chemical reduction of 4-nitrophenol, methyl orange, and methyl blue, thus confirming an electron acceptor capacity of nanoparticles. Finally, biological activity studies using MTT assays showed a significant inhibition (p < 0.05) of cell proliferation of HCT-15 colorectal cancer cells exposed to PdNPs-PVP-Q in comparison to untreated cells. Moreover, treatment with PdNPs-PVP-Q resulted in the apoptosis activation of HCT-15 cells. In conclusion, here we show for the first time the development of PdNPs-PVP-Q and evidence its biological activities through the inhibition of cell proliferation and apoptosis activation in colorectal cancer cells in vitro.
Collapse
Affiliation(s)
- Hilda Amelia Piñón-Castillo
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Rigoberto Martínez-Chamarro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Reyna Reyes-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Laura A. Manjarrez-Nevárez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Laila Nayzzel Muñoz-Castellanos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Ciudad de México 03100, Mexico
| | - Erasmo Orrantia-Borunda
- Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
11
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Huang XF, Chang KF, Lin YL, Liao KW, Hsiao CY, Sheu GT, Tsai NM. Enhancement of cytotoxicity and induction of apoptosis by cationic nano-liposome formulation of n-butylidenephthalide in breast cancer cells. Int J Med Sci 2021; 18:2930-2942. [PMID: 34220320 PMCID: PMC8241786 DOI: 10.7150/ijms.51439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/26/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is the second most common malignancy in women. Current clinical therapy for breast cancer has many disadvantages, including metastasis, recurrence, and poor quality of life. Furthermore, it is necessary to find a new therapeutic drug for breast cancer patients to meet clinical demand. n-Butylidenephthalide (BP) is a natural and hydrophobic compound that can inhibit several tumors. However, BP is unstable in aqueous or protein-rich environments, which reduces the activity of BP. Therefore, we used an LPPC (Lipo-PEG-PEI complex) that can encapsulate both hydrophobic and hydrophilic compounds to improve the limitation of BP. The purpose of this study is to investigate the anti-tumor mechanisms of BP and BP/LPPC and further test the efficacy of BP encapsulated by LPPC on SK-BR-3 cells. BP inhibited breast cancer cell growth, and LPPC encapsulation (BP/LPPC complex) enhanced the cytotoxicity on breast cancer by stabilizing the BP activity and offering endocytic pathways. Additionally, BP and LPPC-encapsulated BP induced cell cycle arrest at the G0/G1 phase and might trigger both extrinsic as well as intrinsic cell apoptosis pathway, resulting in cell death. Moreover, the BP/LPPC complex had a synergistic effect with doxorubicin of enhancing the inhibitory effect on breast cancer cells. Consequently, LPPC-encapsulated BP could improve the anti-cancer effects on breast cancer in vitro. In conclusion, BP exhibited an anti-cancer effect on breast cancer cells, and LPPC encapsulation efficiently improved the cytotoxicity of BP via an acceleration of entrapment efficiency to induce cell cycle block and apoptosis. Furthermore, BP/LPPC exhibited a synergistic effect in combination with doxorubicin.
Collapse
Affiliation(s)
- Xiao-Fan Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Kai-Fu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, 60002, Taiwan, ROC.,Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan, ROC
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| |
Collapse
|
13
|
Khedri M, Rezvantalab S, Maleki R, Rezaei N. Effect of ligand conjugation site on the micellization of Bio-Targeted PLGA-Based nanohybrids: A computational biology approach. J Biomol Struct Dyn 2020; 40:4409-4418. [PMID: 33336619 DOI: 10.1080/07391102.2020.1857840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Maleki
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Popescu RC, Straticiuc M, Mustăciosu C, Temelie M, Trușcă R, Vasile BȘ, Boldeiu A, Mirea D, Andrei RF, Cenușă C, Mogoantă L, Mogoșanu GD, Andronescu E, Radu M, Veldwijk MR, Savu DI. Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells. Int J Mol Sci 2020; 21:ijms21197220. [PMID: 33007844 PMCID: PMC7583846 DOI: 10.3390/ijms21197220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Cosmin Mustăciosu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihaela Temelie
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Adina Boldeiu
- Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies (IMT), 12A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Dragoş Mirea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Radu Florin Andrei
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
- Department of Physics, Applied Science Faculty, “Politehnica” University of Bucharest (UPB), 303 Splaiul Independentei, 060042 Bucharest, Romania
| | - Constantin Cenușă
- Radioisotopes and Radiation Metrology Department, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania;
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim (UMM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| |
Collapse
|
15
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
16
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
17
|
Salaheldin TA, Bharali DJ, Mousa SA. Functionalized nano-targeted moieties in management of prostate cancer. Future Oncol 2020; 16:869-883. [PMID: 32292071 DOI: 10.2217/fon-2019-0635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multimodal properties of nanoparticles, such as simultaneously carrying drugs and/or diagnostic probes for site-specific delivery, make them excellent carriers for diagnosis and treatment of prostate cancer. Advantages are high permeability and selectivity to malignant cells to reduce systemic toxicity of chemotherapeutic drugs. Based on a review of current literature, the lack of efficient and highly specific prostate cancer cell targeting moieties is hindering successful in vivo prostate cancer-targeted drug delivery systems. Highly specific nano-targeting moieties as drug delivery vehicles might improve chemotherapeutic delivery via targeting to specific receptors expressed on the surface of prostate cancer cells. This review describes nano-targeting moieties for management of prostate cancer and its cancer stem cells. Descriptions of targeting moieties using anti-prostate-specific membrane antigen, aptamer, anti-cluster of differentiation 24/44, folic acid and other targeting strategies are highlighted. Current research results are promising and may yield development of next-generation nanoscale theragnostic targeted modalities for prostate cancer treatment.
Collapse
Affiliation(s)
- Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| |
Collapse
|
18
|
Xiao Y, Peng J, Liu Q, Chen L, Shi K, Han R, Yang Q, Zhong L, Zha R, Qu Y, Qian Z. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration. Theranostics 2020; 10:1500-1513. [PMID: 32042318 PMCID: PMC6993219 DOI: 10.7150/thno.39471] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies have been used in skin regeneration due to their ability to differentiate into many cells, promote cytokine secretion and participate in collagen deposition. In this study, we concluded that a CuS@BSA nanoparticles exhibited similar potential in inducing MSCs differentiation to fibroblasts as Cu ions for wound healing. Methods: First, we verified the photothermal efficiency of CuS@BSA in vivo and vitro and had no cytotoxicity for MSCs when the temperature was controlled at 42 °C by adjusting the power of irradiation at 980 nm. And then we detected the expression of vimentin in MSCs, which further directed the MSCs to fibroblasts through Western blotting and Immunofluorescence when treated with CuS@BSA or pre-heat at 42 °C. In addition, we implanted MSCs into the Matrigel or electrospun PLA nanofiber membrane in vitro to evaluating the effect of heating or CuS@BSA on the morphological change of MSCs by SEM. Finally, we evaluated improving skin regeneration by the combination of preheated-MSCs and CuS@BSA nanoparticles that were encapsulated in Matrigel. Results: The CuS@BSA nanoparticles have good photothermal conversion efficiency. Not only CuS nanoparticles itself or after irradiation at 980 nm stimulated the expressioin of vimentin in MSCs. Besides, the CuS@BSA can promote cell proliferation as Cu ion through the expression of ERK. The combination of the CuS@BSA nanoparticles and thermal treatment synergistically improved the closure of an injured wound in an injured wound model. Conclusions: MSCs combined with CuS@BSA are a promising wound dressing for the reconstruction of full-thickness skin injuries.
Collapse
|
19
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
20
|
Implication of Magnetic Nanoparticles in Cancer Detection, Screening and Treatment. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the last few decades, magnetic nanoparticles have been evaluated as promising materials in the field of cancer detection, screening, and treatment. Early diagnosis and screening of cancer may be achieved using magnetic nanoparticles either within the magnetic resonance imaging technique and/or sensing systems. These sensors are designed to selectively detect specific biomarkers, compounds that can be related to the onset or evolution of cancer, during and after the treatment of this widespread disease. Some of the particular properties of magnetic nanoparticles are extensively exploited in cancer therapy as drug delivery agents to selectively target the envisaged location by tailored in vivo manipulation using an external magnetic field. Furthermore, individualized treatment with antineoplastic drugs may be combined with magnetic resonance imaging to achieve an efficient therapy. This review summarizes the studies about the implications of magnetic nanoparticles in cancer diagnosis, treatment and drug delivery as well as prospects for future development and challenges of magnetic nanoparticles in the field of oncology.
Collapse
|