1
|
Guo K, Li S, Wu X, Xiong H. Nanomedicine in the Diagnosis and Treatment of Pancreatic Cancer. Pharmaceutics 2025; 17:449. [PMID: 40284444 PMCID: PMC12030228 DOI: 10.3390/pharmaceutics17040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with increasing incidence and mortality rates, highlighting the urgent need for early diagnosis and treatment. However, early diagnosis of PDAC is extremely challenging due to the atypical early symptoms or the absence of noticeable symptoms. As a result, many patients are diagnosed with local metastasis, and even patients who are eligible for surgical resection have a high postoperative recurrence rate. Consequently, chemotherapy remains the primary treatment for PDAC. However, the unique biological characteristics of PDAC not only promote tumor progression and metastasis but also often lead to chemoresistance, a significant barrier to successful treatment. Recently, nanomaterials have garnered significant attention as promising materials for diagnosing and treating PDAC, showing great potential in cancer therapy, imaging, and drug delivery. Novel targeted nanomedicines, which encapsulate chemotherapy drugs and gene therapy products, offer significant advantages in overcoming resistance. These nanomedicines not only provide innovative solutions to the limitations of conventional chemotherapy but also improve the selectivity for cancer cells to enhance therapeutic outcomes. Current research is focused on the development of advanced nanomedicines, such as liposomes, nanotubes, and polymer-lipid hybrid systems, aimed at making chemotherapy more effective and longer lasting. This review provides a detailed overview of various nanomedicines utilized in the diagnosis and treatment of PDAC and outlines future directions for their development and key breakthroughs.
Collapse
Affiliation(s)
| | | | - Xinyu Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.G.); (S.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.G.); (S.L.)
| |
Collapse
|
2
|
Liao TB, Luo KX, Tu JY, Zhang YL, Zhang GJ, Sun ZY. DSN signal amplification strategy based nanochannels biosensor for the detection of miRNAs. Bioelectrochemistry 2024; 160:108771. [PMID: 38972158 DOI: 10.1016/j.bioelechem.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
MiRNA-21 is recognized as an important biological marker for the diagnosis, treatment, and prognosis of breast cancer. Here, we have created a nanochannel biosensor utilizing the duplex-specific nuclease (DSN) signal amplification strategy to achieve the detection of miRNAs. In this system, DNA as the capture probe was covalently immobilized on the surface of nanochannels, which hybridized with the target miRNA and forms RNA/DNA duplexes. DSN could cleave the probe DNA in RNA/DNA duplexes, recycling target miRNA, which may again hybridized with other DNA probes. After N cycles, most of the DNA probes had been cleaved, and the content of miRNA could be quantified by detecting changes in surface charge density. This biosensor can distinguish miR-21 from non-complementary miRNAs and one-base mismatched miRNAs, with reliable detection limits as low as 1 fM in PBS. In addition, we had successfully applied this method to analysis of total RNA samples in MCF-7 cells and HeLa cells, and the nanochannels had also shown excellent responsiveness and strong anti-interference ability. This new method is expected to contribute to miRNA detection in clinical diagnostics, providing a unique approach to detecting and distinguishing disease-associated molecules.
Collapse
Affiliation(s)
- Tang-Bin Liao
- School of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Ke-Xin Luo
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Ji-Yuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China.
| | - Zhong-Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China.
| |
Collapse
|
3
|
Takeuchi N, Hiratani M, Kawano R. Pattern Recognition of microRNA Expression in Body Fluids Using Nanopore Decoding at Subfemtomolar Concentrations. JACS AU 2022; 2:1829-1838. [PMID: 36032536 PMCID: PMC9400052 DOI: 10.1021/jacsau.2c00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper describes a method for detecting microRNA (miRNA) expression patterns using the nanopore-based DNA computing technology. miRNAs have shown promise as markers for cancer diagnosis due to their cancer type specificity, and therefore simple strategies for miRNA pattern recognition are required. We propose a system for pattern recognition of five types of miRNAs overexpressed in bile duct cancer (BDC). The information of miRNAs from BDC is encoded in diagnostic DNAs (dgDNAs) and decoded electrically by nanopore analysis. With this system, we succeeded in the label-free detection of miRNA expression patterns from the plasma of BDC patients. Moreover, our dgDNA-miRNA complexes can be detected at subfemtomolar concentrations, which is a significant improvement compared to previously reported limits of detection (∼10-12 M) for similar analytical platforms. Nanopore decoding of dgDNA-encoded information represents a promising tool for simple and early cancer diagnosis.
Collapse
|
4
|
Liu T, Wu X, Xu H, Ma Q, Du Q, Yuan Q, Gao P, Xia F. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels. Anal Chem 2021; 93:13054-13062. [PMID: 34519478 DOI: 10.1021/acs.analchem.1c03010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Probe-modified nanopores/nanochannels are one of the most advanced sensors because the probes interact strongly with ions and targets in nanoconfinement and create a sensitive and selective ionic signal. Recently, ionic signals have been demonstrated to be sensitive to the probe-target interaction on the outer surface of nanopores/nanochannels, which can offer more open space for target recognition and signal conversion than nanoconfined cavities. To enhance the ionic signal, we investigated the effect of grafting density, a critical parameter of the sensing interface, of the probe on the outer surface of nanochannels on the change rate of the ionic signal before and after target recognition (β). Electroneutral peptide nucleic acids and negatively charged DNA are selected as probes and targets, respectively. The experimental results showed that when adding the same number of targets, the β value increased with the probe grafting density on the outer surface. A theoretical model with clearly defined physical properties of each probe and target has been established. Numerical simulations suggest that the decrease of the background current and the aggregation of targets at the mouth of nanochannels with increasing probe grafting density contribute to this enhancement. This work reveals the signal mechanism of probe-target recognition on the outer surface of nanochannels and suggests a general approach to the nanochannel/nanopore design leading to sensitivity improvement on the basis of relatively good selectivity.
Collapse
Affiliation(s)
- Tianle Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoqing Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hongquan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, P. R. China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Downregulated KIF3B Induced by miR-605-3p Inhibits the Progression of Colon Cancer via Inactivating Wnt/ β-Catenin. JOURNAL OF ONCOLOGY 2021; 2021:5046981. [PMID: 34422048 PMCID: PMC8373513 DOI: 10.1155/2021/5046981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022]
Abstract
Colon cancer is a common malignant disease with high morbidity and mortality, and miRNA dysfunction has been confirmed as an important reason for cancer development. Several studies have verified miR-605-3p as a tumor inhibitor while its roles in colon cancer remain uncertain. In this study, the specimen of the patients and the cell lines of colon cancer were used to observe the expression of miR-605-3p, and the CCK-8, Transwell assay, and flow cytometry assay were used to observe the functions of miR-605-3p in colon cancer cells. The downstream factors of miR-605-3p were predicted by TargetScan and then were verified by dual-luciferase reporter assay. Moreover, western blot was used to investigate the effect of miR-605-3p on Wnt/β-catenin signal pathway. The result showed that miR-605-3p was extremely downregulated in the pathological tissues and tumor cells, and miR-605-3p could effectively induce the apoptosis and impede the proliferation and invasion of the tumor cells. It was found that KIF3B was a target of KIF3B; decreased KIF3B could reverse the effects of miR-605-3p on colon cancer. Besides, the inactivated Wnt/β-catenin pathway was also observed in colon cells when miR-605-3p was upregulated, and the phenomenon could be rescued by KIF3B upregulation. In conclusion, miR-605-3p could inactivate the Wnt/β-catenin pathway induced via promoting KIF3B expression.
Collapse
|
6
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
7
|
Wang W, Xu Z, Wang N, Yao R, Qin T, Lin H, Yue L. Prognostic value of eight immune gene signatures in pancreatic cancer patients. BMC Med Genomics 2021; 14:42. [PMID: 33546693 PMCID: PMC7863419 DOI: 10.1186/s12920-020-00868-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant tumors of the digestive tract, and it has a poor prognosis. Traditional methods are not effective to accurately assess the prognosis of patients with pancreatic cancer. Immunotherapy is a new promising approach for the treatment of pancreatic cancer; however, some patients do not respond well to immunotherapy, which may be related to tumor microenvironment regulation. In this study, we use gene expression database to mine important immune genes and establish a prognostic prediction model for pancreatic cancer patients. We hope to provide a feasible method to evaluate the prognosis of pancreatic cancer and provide valuable targets for pancreatic cancer immunotherapy. RESULTS We used univariate COX proportional hazard regression analysis, the least absolute shrinkage and selection operator, and multivariate COX regression analysis to screen 8 genes related to prognosis from the 314 immune-related genes, and used them to construct a new clinical prediction model in the TCGA pancreatic cancer cohort. Subsequently, we evaluated the prognostic value of the model. The Kaplan-Meier cumulative curve showed that patients with low risk scores survived significantly longer than patients with high risk scores. The area under the ROC curve (AUC value) of the risk score was 0.755. The univariate COX analysis showed that the risk score was significantly related to overall survival (HR 1.406, 95% CI 1.237-1.598, P < 0.001), and multivariate analysis showed that the risk score was an independent prognostic factor (HR 1.400, 95% CI 1.287-1.522, P < 0.001). Correlation analysis found that immune genes are closely related to tumor immune microenvironment. CONCLUSIONS Based on the TCGA-PAAD cohort, we identified immune-related markers with independent prognostic significance, validated, and analyzed their biological functions, to provide a feasible method for the prognosis of pancreatic cancer and provide potentially valuable targets for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Wang
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Zhijian Xu
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Ning Wang
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Ruyong Yao
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Tao Qin
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Hao Lin
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Lu Yue
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, 5 Donghaizhong Road, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|