1
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Gray HK, Beaird OE, Smith EA, Schaenman JM, Yang S. Domestically Acquired NDM-1-Producing Pseudomonas aeruginosa, Southern California, USA, 2023. Emerg Infect Dis 2023; 29:2382-2385. [PMID: 37877613 PMCID: PMC10617354 DOI: 10.3201/eid2911.230646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
We describe a case of New Delhi metallo-β-lactamase 1-producing carbapenem-resistant Pseudomonas aeruginosa (CRPA) in a transplant patient with multiple hospitalizations in California, USA. Whole-genome sequencing revealed the isolate was genetically distinctive, despite ≈95% similarity to other global strains. The patient's lack of international travel suggests this CRPA was acquired domestically.
Collapse
|
3
|
Singh S, Pathak A, Fatima N, Sahu C, Prasad KN. Characterisation of OXA-48-like carbapenemases in Escherichia coli and Klebsiella pneumoniae from North India. 3 Biotech 2023; 13:134. [PMID: 37113569 PMCID: PMC10126172 DOI: 10.1007/s13205-023-03537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The oxacillinase-48 (OXA-48)-like carbapenemases are class D β-lactamases and increasingly reported in Enterobacterial species. The detection of these carbapenemases is challenging and little information is available on the epidemiology and plasmid characteristics of OXA-48-like carbapenemase producers. We detected the presence of OXA-48-like carbapenemases in 500 clinical isolates of Escherichia coli and Klebsiella pneumoniae, followed by detection of other carbapenemases, extended spectrum β-lactamases (ESBLs) and 16S rRNA methyltransferases in OXA-48 producers. Clonal relatedness was studied using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Finally, plasmid characterisation was performed through conjugation experiment, S1-PFGE and Southern hybridisation. Around 40% of E. coli and K. pneumoniae isolates harboured OXA-48-like β-lactamases. Two OXA-48 allele variants, OXA-232 and OXA-181 were detected in our study. OXA-48 producers co-harbored diverse drug-resistant genes belonging to other classes of carbapenemases, ESBLs and 16S rRNA methyltransferases. OXA-48-like carbapenemase producers exhibited high clonal diversity. Bla OXA-48 carrying plasmids were conjugative, untypable and their size was ~ 45 kb and ~ 104.5 kb in E. coli and K. pneumoniae respectively. In conclusion, OXA-48-like carbapenemases have emerged as major cause of carbapenem resistance in Enterobacteriaceae and probably still being under reported. Strict surveillance and adequate detection methods are needed to prevent the dissemination of OXA-48-like carbapenemases.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 India
- Present Address: Center for Biomedical Research, School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX USA
| | - Ashutosh Pathak
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Nida Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 India
- Department of Microbiology, Apollomedics Super Speciality Hospital, Lucknow, 226012 India
| |
Collapse
|
4
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
5
|
Müller AR, Leite BR, Corção G. Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Microb Drug Resist 2022; 28:654-659. [PMID: 35325574 DOI: 10.1089/mdr.2021.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the blaOXA-48 gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.
Collapse
Affiliation(s)
- Aline Reis Müller
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Belize Rodrigues Leite
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Abavisani M, Goudarzi M, Ghalavand Z, Hajikhani B, Rad ZR, Rad ZR, Hashemi A. Evaluation of efflux pumps overexpression and β-lactamase genes among colistin resistant Pseudomonas aeruginosa. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Mushtaq S, Meunier D, Vickers A, Woodford N, Livermore DM. Activity of imipenem/relebactam against Pseudomonas aeruginosa producing ESBLs and carbapenemases. J Antimicrob Chemother 2021; 76:434-442. [PMID: 33152755 DOI: 10.1093/jac/dkaa456] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ESBL- and carbapenemase-producing Pseudomonas aeruginosa are prevalent in, for example, the Middle East, Eastern Europe and Latin America, though rarer elsewhere. Because P. aeruginosa readily mutate to become carbapenem resistant via loss of OprD, isolates producing ESBLs are often as broadly resistant as those producing carbapenemases. We hypothesized that: (i) relebactam might overcome class A carbapenemases directly in P. aeruginosa; and (ii) relebactam's inhibition of AmpC, which gives a generalized potentiation of imipenem against the species, might restore imipenem susceptibility in OprD-deficient ESBL producers. METHODS MICs were determined using CLSI agar dilution for P. aeruginosa isolates producing ESBLs, principally VEB types, and for those producing GES-5, KPC and other carbapenemases. RESULTS Relebactam potentiated imipenem by around 4-8-fold for most P. aeruginosa isolates producing VEB and other ESBLs; however, MICs were typically only reduced to 4-16 mg/L, thus mostly remaining above EUCAST's susceptible range and only partly overlapping CLSI's intermediate range. Strong (approx. 64-fold) potentiation was seen for isolates producing KPC carbapenemases, but only 2-fold synergy for those with GES-5. Predictably, potentiation was not seen for isolates with class B or D carbapenemase activity. CONCLUSIONS Relebactam did potentiate imipenem against ESBL-producing P. aeruginosa, which are mostly imipenem resistant via OprD loss, but this potentiation was generally insufficient to reduce imipenem MICs to the clinical range. Imipenem resistance owing to KPC carbapenemases was reversed by relebactam in P. aeruginosa, just as for Enterobacterales.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
8
|
Rad ZR, Rad ZR, Goudarzi H, Goudarzi M, Alizade H, Hematian A, Ardebili A, Ezadi F, Mazraeh FN, Hashemi A. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and Pediatric patients in Iranian hospitals. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Nageeb W, Amin DH, Mohammedsaleh ZM, Makharita RR. Novel Molecular Markers Linked to Pseudomonas aeruginosa Epidemic High-Risk Clones. Antibiotics (Basel) 2021; 10:antibiotics10010035. [PMID: 33401446 PMCID: PMC7824207 DOI: 10.3390/antibiotics10010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The population structure of Pseudomonas aeruginosa is panmictic-epidemic in nature, with the prevalence of some high-risk clones. These clones are often linked to virulence, antibiotic resistance, and more morbidity. The clonal success of these lineages has been linked to acquisition and spread of mobile genetic elements. The main aim of the study was to explore other molecular markers that explain their global success. A comprehensive set of 528 completely sequenced P. aeruginosa genomes was analyzed. The population structure was examined using Multilocus Sequence Typing (MLST). Strain relationships analysis and diversity analysis were performed using the geoBURST Full Minimum Spanning Tree (MST) algorithm and hierarchical clustering. A phylogenetic tree was constructed using the Unweighted Pair Group Method with Arithmetic mean (UPGMA) algorithm. A panel of previously investigated resistance markers were examined for their link to high-risk clones. A novel panel of molecular markers has been identified in relation to risky clones including armR, ampR, nalC, nalD, mexZ, mexS, gyrAT83I, gyrAD87N, nalCE153Q, nalCS46A, parCS87W, parCS87L, ampRG283E, ampRM288R, pmrALeu71Arg, pmrBGly423Cys, nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A. In addition to mobile genetic elements, chromosomal variants in membrane proteins and efflux pump regulators can play an important role in the success of high-risk clones. Finding risk-associated markers during molecular surveillance necessitates applying more infection-control precautions.
Collapse
Affiliation(s)
- Wedad Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
- Correspondence:
| | - Dina H. Amin
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rabab R. Makharita
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Biology Department, Faculty of Science and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
10
|
Phenotypic and Genomic Comparison of the Two Most Common ExoU-Positive Pseudomonas aeruginosa Clones, PA14 and ST235. mSystems 2020; 5:5/6/e01007-20. [PMID: 33293405 PMCID: PMC7743143 DOI: 10.1128/msystems.01007-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotyping of 2,882 Pseudomonas aeruginosa isolates that had been collected during the last 40 years identified the ExoU-positive lineages PA14 (ST253) and ST235 as the second and third most frequent clones in the P. aeruginosa population. Both clones were approximately 2-fold more frequently detected in animate habitats than in soil or aquatic habitats. While ST253 clone isolates were causing mainly acute and chronic infections in humans, ST235 isolates had been preferentially collected from hospitalized patients with severe acute infections, particularly, keratitis, urinary tract infections, burn wounds, and ventilator-associated pneumonia. The two major exoU clones differed substantially in the composition and flexibility of the accessory genome and by more than 8,000 amino acid sequences. Pronounced sequence variation between orthologs was noted in genes encoding elements of secretion systems and secreted effector molecules, including the type III secretion system, indicating the modes of action of the different clones. When comparing representatives of the two clones in batch culture, the PA14 strain orchestrated the quorum sensing circuitry for the expression of pathogenic traits and stopped growing in batch culture when it entered the stationary phase, but the quorum sensing-deficient ST235 strain expressed high type III secretion activity and continued to grow and to divide. In summary, unrestricted growth, high constitutive type III secretion activity, and facilitated uptake of foreign DNA could be major features that have made ST235 a global high-risk clone associated with poor outcomes of acute nosocomial infections.IMPORTANCE The ubiquitous and metabolically versatile environmental bacterium Pseudomonas aeruginosa can cause infections in a wide variety of hosts, including insects, plants, animals, and humans. P. aeruginosa is one of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens that are the major cause of nosocomial infections in the United States and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics. Most experimental work on P. aeruginosa has been performed with reference strains PAO1 and PA14, providing deep insight into key metabolic and regulatory pathways thought to be applicable to all P. aeruginosa strains. However, this comparative study on the two most common exoU-positive clones taught us that there are major lineages in the population such as the global high-risk clone ST235 that exhibit uncommon traits of lifestyle, genome mobility, and pathogenicity distinct from those in our knowledge gained from the studies with the reference strains.
Collapse
|
11
|
Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents 2020; 56:106196. [DOI: 10.1016/j.ijantimicag.2020.106196] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 01/17/2023]
|
12
|
Dehbashi S, Pourmand MR, Alikhani MY, Asl SS, Arabestani MR. Coordination of las regulated virulence factors with Multidrug-Resistant and extensively drug-resistant in superbug strains of P. aeruginosa. Mol Biol Rep 2020; 47:4131-4143. [PMID: 32474845 DOI: 10.1007/s11033-020-05559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Successful pathogenicity often resulted from a complicated association between virulence and antibiotic resistance in Pseudomonas aeruginosa infections. Therefore, the current study aimed to investigate the relationship between the las system and antibiotic resistance. Seventy-three (73) P. aeruginosa isolates were collected from burn wounds (26.02%), blood cultures (30.13%), catheters (12.32%), and urine culture (31.50%). Among the 73 collected isolates, 22 isolates were considered as multi-drug resistant (MDR) and 11 isolates as extensively-drug resistant (XDR). Furthermore, phenazines and LasA protease were detected among 21.91% and 32.87% of isolates, respectively. Quantitative real-time PCR assessment of KPC, MBL, and lasI/R indicated that resistance and virulence factors are more expressed in XDR strains than MDR strains. Also, the expression level of KPC and MBL reduced in non-biofilm forming strains. However, increased expression levels of lasI, lasR, and the KPC genes were observed in LasA and LasB protease producing strains. Interestingly, 16 known sequence types (including ST108, ST260, ST217) and three novel STs (ST2452, ST2427, and ST2542) were characterized among the collected isolates, which are related to the virulence and resistance. In MDR-XDR strains, a strong correlation between lasI/R and the variants of antibiotic resistance genes was found. In conclusion, the pathogenicity of P. aeruginosa may increase the prevalence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|