1
|
Huang S, Wei DD, Hong H, Chen S, Fan LP, Huang QS, Du FL, Xiang TX, Li P, Zhang W, Wan LG, Liu Y. Capture of mobile genetic elements following intercellular conjugation promotes the production of ST11-KL64 CR-hvKP. Microbiol Spectr 2025; 13:e0134724. [PMID: 39898629 DOI: 10.1128/spectrum.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/14/2024] [Indexed: 02/04/2025] Open
Abstract
Sequence type (ST)11 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) can cause life-threatening infections and is therefore of global concern. Despite its importance, the evolutionary history and mechanism for the emergence of ST11 CR-hvKP are unclear. In recent years, the detection rate of ST11 CR-hvKP has increased in a teaching hospital. Based on its clonal transmission, a conjugation experiment was performed between a hvKP strain AP8555 and a ST11 CRKP strain, resulting in two ST11 CR-hvKP strains. Research had confirmed that the virulence plasmid pAP855 was horizontally transferred to the CRKP strain to form the conjugant S270-Tc, which was recombined by mobile genetic elements to evolve into the conjugant S270-Tc-R. The S270-Tc-R had high virulence, high plasmid stability, and greater adaptability. Interestingly, it had high homology to clinically prevalent ST11 CR-hvKP strains using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). This is the first demonstration that plasmid recombination in vitro has led to the formation of ST11 CR-hvKP strains. The clinical setting is a multi-factorial and multi-selection pressure environment that may stimulate the evolution of conjugant strains in the transition period to local strains in the stable period, and surveillance is urgently needed for infection control. IMPORTANCE The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) heralded the onset of a new and rapidly worsening public health disaster on a global scale. More attention has been paid to its evolutionary history and mechanism, which currently remains unclear. In this study, a conjugation experiment was performed between a hvKP strain AP8555 and a ST11 CRKP strain, resulting in two ST11 CR-hvKP strains. We had confirmed that the virulence plasmid pAP855 was horizontally transferred to the CRKP strain to form the conjugant S270-Tc, which was recombined by mobile genetic elements to evolve into the conjugant S270-Tc-R. The S270-Tc-R had high virulence, high plasmid stability, and greater adaptability. Interestingly, it had high homology to clinically prevalent ST11 CR-hvKP strains using pulsed-field gel electrophoresis and whole-genome sequencing.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Dan Wei
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang, China
| | - Hanxu Hong
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Si Chen
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lin-Ping Fan
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi-Sen Huang
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fang-Ling Du
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tian-Xin Xiang
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - La-Gen Wan
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang Liu
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang, China
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, China
| |
Collapse
|
2
|
Sattler J, Noster J, Stelzer Y, Spille M, Schäfer S, Xanthopoulou K, Sommer J, Jantsch J, Peter S, Göttig S, Gatermann SG, Hamprecht A. OXA-48-like carbapenemases in Proteus mirabilis - novel genetic environments and a challenge for detection. Emerg Microbes Infect 2024; 13:2353310. [PMID: 38712879 PMCID: PMC11123474 DOI: 10.1080/22221751.2024.2353310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
OXA-48-like enzymes represent the most frequently detected carbapenemases in Enterobacterales in Western Europe, North Africa and the Middle East. In contrast to other species, the presence of OXA-48-like in Proteus mirabilis leads to an unusually susceptible phenotype with low MICs for carbapenems and piperacillin-tazobactam, which is easily missed in the diagnostic laboratory. So far, there is little data available on the genetic environments of the corresponding genes, blaOXA-48-like, in P. mirabilis. In this study susceptibility phenotypes and genomic data of 13 OXA-48-like-producing P. mirabilis were investigated (OXA-48, n = 9; OXA-181, n = 3; OXA-162, n = 1). Ten isolates were susceptible to meropenem and ertapenem and three isolates were susceptible to piperacillin-tazobactam. The gene blaOXA-48 was chromosomally located in 7/9 isolates. Thereof, in three isolates blaOXA-48 was inserted into a P. mirabilis genomic island. Of the three isolates harbouring blaOXA-181 one was located on an IncX3 plasmid and two were located on a novel MOBF plasmid, pOXA-P12, within the new transposon Tn7713. In 5/6 isolates with plasmidic location of blaOXA-48-like, the plasmids could conjugate to E. coli recipients in vitro. Vice versa, blaOXA-48-carrying plasmids could conjugate from other Enterobacterales into a P. mirabilis recipient. These data show a high diversity of blaOXA-48-like genetic environments compared to other Enterobacterales, where genetic environments are quite homogenous. Given the difficult-to-detect phenotype of OXA-48-like-producing P. mirabilis and the location of blaOXA-48-like on mobile genetic elements, it is likely that OXA-48-like-producing P. mirabilis can disseminate, escape most surveillance systems, and contribute to a hidden spread of OXA-48-like.
Collapse
Affiliation(s)
- Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Centre for Infection Research (DZIF)
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Martina Spille
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Sina Schäfer
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Julian Sommer
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF)
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF)
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Sören G. Gatermann
- National Reference Laboratory for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
3
|
Zhang X, Xie Y, Zhang Y, Lei T, Zhou L, Yao J, Liu L, Liu H, He J, Yu Y, Tu Y, Li X. Evolution of ceftazidime-avibactam resistance driven by mutations in double-copy blaKPC-2 to blaKPC-189 during treatment of ST11 carbapenem-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0072224. [PMID: 39287378 PMCID: PMC11495026 DOI: 10.1128/msystems.00722-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants can contribute to resistance to ceftazidime-avibactam (CZA) in Klebsiella pneumoniae (KP). However, two-copy KPC variant-mediated resistance to CZA has rarely been reported to date. Here, we aimed to clarify the evolutionary trajectory of CZA resistance driven by mutations in double-copy blaKPC-2 to blaKPC-189 carried by the tandem core structure (ISKpn6-blaKPC-ISKpn27-tnpR-IS26) during treatment of ST11 carbapenem-resistant K. pneumoniae (CRKP). The CZA-resistant KP strain carried double-copy blaKPC-189, a variant with alanine-threonine and aspartate-tyrosine substitutions at Ambler amino acid positions 172 (A172T) and 179 (D179Y) of blaKPC-2. Clone experiments confirmed that, compared with that of the wild-type blaKPC-2 clone strain, the minimum inhibitory concentration of CZA increased 16-fold in the blaKPC-189-mutant strain. Furthermore, protein structure analysis revealed the A172T and D179Y mutations of blaKPC-189 can have a direct effect on the binding affinity of CAZ and AVI for KPC. Sequence comparison revealed that blaKPC-189 was mutated in a double-copy format upon CZA exposure, which was carried by the IS26-mediated tandem core structure ISKpn27-blaKPC-ISKpn6. This tandem core structure apparently evolves in vivo during infection, although not by self-transferring, and multiple ISKpn27-blaKPC-ISKpn6 copy numbers could mediate transferable CZA resistance upon mobilization. In addition, compared with the wild-type blaKPC-2 gene, the blaKPC-189 gene had no fitness cost. In summary, our study highlighted the emergence of CZA-resistant blaKPC-189 variants in the ST11 clone and the presence of a double-copy blaKPC-189 in the IncFII-type plasmid, which is carried by a tandem core structure (IS26-ISKpn6-blaKPC-189-ISKpn27-tnpR-IS26). IMPORTANCE To date, ceftazidime-avibactam (CZA) resistance caused by double-copy Klebsiella pneumoniae carbapenemase (KPC) variants has not been elucidated. The multicopy forms of carbapenem resistance genes carried by the same plasmid are relatively rare in most carbapenem-resistant Enterobacteriaceae. In this study, we elucidate the evolutionary trajectory of CZA resistance in ST11 carbapenem-resistant K. pneumoniae harboring a double-copy blaKPC and provide new insights into the mechanisms of acquired resistance to CZA.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Feicheng Hospital of Traditional Chinese Medicine, Feicheng, Shandong, China
| | - Yinrong Xie
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Ying Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Longjie Zhou
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, Zhejiang, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Moran RA, Behruznia M, Holden E, Garvey MI, McNally A. pQEB1: a hospital outbreak plasmid lineage carrying bla KPC-2. Microb Genom 2024; 10:001291. [PMID: 39222339 PMCID: PMC11368168 DOI: 10.1099/mgen.0.001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
While conducting genomic surveillance of carbapenemase-producing Enterobacteriaceae (CPE) from patient colonisation and clinical infections at Birmingham's Queen Elizabeth Hospital (QE), we identified an N-type plasmid lineage, pQEB1, carrying several antibiotic resistance genes, including the carbapenemase gene bla KPC-2. The pQEB1 lineage is concerning due to its conferral of multidrug resistance, its host range and apparent transmissibility, and its potential for acquiring further resistance genes. Representatives of pQEB1 were found in three sequence types (STs) of Citrobacter freundii, two STs of Enterobacter cloacae, and three species of Klebsiella. Hosts of pQEB1 were isolated from 11 different patients who stayed in various wards throughout the hospital complex over a 13 month period from January 2023 to February 2024. At present, the only representatives of the pQEB1 lineage in GenBank were carried by an Enterobacter hormaechei isolated from a blood sample at the QE in 2016 and a Klebsiella pneumoniae isolated from a urine sample at University Hospitals Coventry and Warwickshire (UHCW) in May 2023. The UHCW patient had been treated at the QE. Long-read whole-genome sequencing was performed on Oxford Nanopore R10.4.1 flow cells, facilitating comparison of complete plasmid sequences. We identified structural variants of pQEB1 and defined the molecular events responsible for them. These have included IS26-mediated inversions and acquisitions of multiple insertion sequences and transposons, including carriers of mercury or arsenic resistance genes. We found that a particular inversion variant of pQEB1 was strongly associated with the QE Liver speciality after appearing in November 2023, but was found in different specialities and wards in January/February 2024. That variant has so far been seen in five different bacterial hosts from six patients, consistent with recent and ongoing inter-host and inter-patient transmission of pQEB1 in this hospital setting.
Collapse
Affiliation(s)
- Robert A. Moran
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, The University of Birmingham, Edgbaston B15 2TT, UK
| | - Mahboobeh Behruznia
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, The University of Birmingham, Edgbaston B15 2TT, UK
| | - Elisabeth Holden
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB, UK
| | - Mark I. Garvey
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, The University of Birmingham, Edgbaston B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB, UK
| | - Alan McNally
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, The University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
5
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kyung SM, Lee JH, Lee ES, Xiang XR, Yoo HS. Emergence and genomic chion of Proteus mirabilis harboring bla NDM-1 in Korean companion dogs. Vet Res 2024; 55:50. [PMID: 38594755 PMCID: PMC11005143 DOI: 10.1186/s13567-024-01306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-β-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xi-Rui Xiang
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Liu Z, Gao Y, Wang M, Liu Y, Wang F, Shi J, Wang Z, Li R. Adaptive evolution of plasmid and chromosome contributes to the fitness of a blaNDM-bearing cointegrate plasmid in Escherichia coli. THE ISME JOURNAL 2024; 18:wrae037. [PMID: 38438143 PMCID: PMC10976473 DOI: 10.1093/ismejo/wrae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Large cointegrate plasmids recruit genetic features of their parental plasmids and serve as important vectors in the spread of antibiotic resistance. They are now frequently found in clinical settings, raising the issue of how to limit their further transmission. Here, we conducted evolutionary research of a large blaNDM-positive cointegrate within Escherichia coli C600, and discovered that adaptive evolution of chromosome and plasmid jointly improved bacterial fitness, which was manifested as enhanced survival ability for in vivo and in vitro pairwise competition, biofilm formation, and gut colonization ability. From the plasmid aspect, large-scale DNA fragment loss is observed in an evolved clone. Although the evolved plasmid imposes a negligible fitness cost on host bacteria, its conjugation frequency is greatly reduced, and the deficiency of anti-SOS gene psiB is found responsible for the impaired horizontal transferability rather than the reduced fitness cost. These findings unveil an evolutionary strategy in which the plasmid horizontal transferability and fitness cost are balanced. From the chromosome perspective, all evolved clones exhibit parallel mutations in the transcriptional regulatory stringent starvation Protein A gene sspA. Through a sspA knockout mutant, transcriptome analysis, in vitro transcriptional activity assay, RT-qPCR, motility test, and scanning electron microscopy techniques, we demonstrated that the mutation in sspA reduces its transcriptional inhibitory capacity, thereby improving bacterial fitness, biofilm formation ability, and gut colonization ability by promoting bacterial flagella synthesis. These findings expand our knowledge of how cointegrate plasmids adapt to new bacterial hosts.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- College of Animal Science and Technology & College of Veterinary medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300 Zhejiang Province, People's Republic of China
| | - Yanyun Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu Province, People's Republic of China
| | - Jing Shi
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu Province, People's Republic of China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Institute of Agricultural Science and Technology Development, Yangzhou, 225009 Jiangsu Province, People's Republic of China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Lab of Zoonosis, Yangzhou, 225009 Jiangsu Province, People's Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu Province, People's Republic of China
| |
Collapse
|
8
|
Wang Y, He J, Sun L, Jiang Y, Hu L, Leptihn S, Zhu P, Fu X, Yu Y, Hua X. IS26 mediated bla CTX-M-65 amplification in Escherichia coli increase the antibiotic resistance to cephalosporin in vivo. J Glob Antimicrob Resist 2023; 35:202-209. [PMID: 37802302 DOI: 10.1016/j.jgar.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES To characterize two Escherichia coli strains isolated from a patient pre- and post-treatment, using β-lactams and β-lactam/β-lactamase inhibitor combinations (BLBLIs). METHODS A combination of antibiotic susceptibility testing (AST) with whole genome sequencing using Illumina and Oxford Nanopore platforms. Long-read sequencing and reverse transcription-quantitative PCR were performed to determine the copy numbers and expression levels of antibiotic resistance genes (ARGs), respectively. Effect on fitness costs were assessed by growth rate determination. RESULTS The strain obtained from the patient after the antibiotic treatment (XH989) exhibited higher resistance to cefepime, BLBLIs and quinolones compared with the pre-treatment strain (XH987). Sequencing revealed IS26-mediated duplications of a IS26-fosA3-blaCTX-M-65 plasmid-embedded element in strain XH989. Long-read sequencing (7.4 G data volume) indicated a variation in copy numbers of blaCTX-M-65 within one single culture of strain XH989. Increased copy numbers of the IS26-fosA3-blaCTX-M-65 element were correlated with higher CTX-M-65 expression level and did not impose fitness costs, while facilitating faster growth under high antibiotic concentrations. CONCLUSION Our study is an example from the clinic how BLBLIs and β-lactams exposure in vivo possibly promoted the amplification of an IS26-multiple drug resistance (MDR) region. The observation of a copy number variation seen with the blaCTX-M-65 gene in the plasmid of the post-treatment strain expands our knowledge of insertion sequence dynamics and evolution during treatment.
Collapse
Affiliation(s)
- Yinping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou Maternity and Child Health Care Hospital, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hangzhou General Hospital of Chinese People's Armed Police, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biotech Co. Ltd., Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biotech Co. Ltd., Qingdao, Shandong, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| |
Collapse
|
9
|
Gao G, He W, Jiao Y, Cai Z, Lv L, Liu JH. The origin and evolution of IncF33 plasmids based on large-scale data sets. mSystems 2023; 8:e0050823. [PMID: 37750716 PMCID: PMC10654068 DOI: 10.1128/msystems.00508-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Plasmids that capture multiple antibiotic resistance genes are spreading widely, leading to the emergence and prevalence of multidrug-resistant bacteria. IncF33 plasmids are a newly emerged plasmid type highly prevalent in animal-source Enterobacterales in China, and they are important vectors for transmitting several clinically important antibiotic resistance genes. The study revealed that the IncF33 plasmid is mainly prevalent in China animal-derived Escherichia coli and has the potential for cointegration and intercontinental dissemination. Therefore, it is crucial to enhance surveillance and control measures to limit the spread of IncF33 plasmids and their associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Guolong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Wanyun He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Yanxiang Jiao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Zhongpeng Cai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Yang Y, Liu H, Chen L, Mao M, Zhang X, Zhou L, Duan D, Li X, Zhou H. Molecular characterization and comparison of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0102823. [PMID: 37623430 PMCID: PMC10581223 DOI: 10.1128/spectrum.01028-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), which harbors the bla NDM plasmid, has been reported extensively and is considered a global threat clinically. However, characterization and comparisons of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in CRKP are lacking. Here, we systematically compared the differences in the characteristics, genetic backgrounds, transferability, and fitness costs between bla NDM-1-carrying and bla NDM-5-carrying plasmids in K. pneumoniae isolates. Fifteen NDM-producing CRKP isolates were recovered from 1376 CRKP isolates between 2019 and 2021, of which 4 were positive for bla NDM-1 and 11 were positive for bla NDM-5. All strains were highly resistant to carbapenem but remained susceptible to tigecycline and colistin. Core-genome-based phylogenetic analyses revealed that these strains were not clonally related. Whole-genome sequencing showed that bla NDM-1 and bla NDM-5 were located on ~54 kb and ~46 kb IncX3-type plasmids, respectively. The backbone, genetic context, and fitness cost of the bla NDM-1-bearing plasmid were highly similar to those of the bla NDM-5-carrying plasmid, but the transferability of the bla NDM-1-positive plasmid was greater than that of the bla NDM-5-positive plasmid. In conclusion, the transmission of bla NDM-1 or bla NDM-5 is mainly disseminated by plasmids rather than clonal spread. The high transfer frequency of the IncX3 plasmid facilitates the prevalence and dissemination of NDM-KP among Enterobacteriaceae. IMPORTANCE The emergence of NDM-producing Klebsiella pneumoniae is a severe challenge to public health. The widespread presence of bla NDM-1 and bla NDM-5 in Enterobacteriaceae has aroused broad concern. In this study, we performed molecular characterization of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae (CRKP) and compared their phenotypes between strains with different bla NDM subtype. Our findings highlight the importance of IncX3-type plasmids in the transfer of the bla NDM-1 and bla NDM-5 genes and demonstrate that the bla NDM-1 plasmid possesses higher transfer ability. These data will provide important insights into carbapenem resistance gene transfer via plasmids and their further spread in clinical settings.
Collapse
Affiliation(s)
- Yunxing Yang
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang School of Medicine, Hangzhou, China
| | - Haiyang Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lingxia Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minjie Mao
- Department of Clinical Laboratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Longjie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Darong Duan
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’ s Hospital, Taizhou, Zhejiang, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Li Y, Yin M, Fang C, Fu Y, Dai X, Zeng W, Zhang L. Genetic analysis of resistance and virulence characteristics of clinical multidrug-resistant Proteus mirabilis isolates. Front Cell Infect Microbiol 2023; 13:1229194. [PMID: 37637463 PMCID: PMC10457174 DOI: 10.3389/fcimb.2023.1229194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Proteus mirabilis is the one of most important pathogens of catheter-associated urinary tract infections. The emergence of multidrug-resistant (MDR) P. mirabilis severely limits antibiotic treatments, which poses a public health risk. This study aims to investigate the resistance characteristics and virulence potential for a collection of P. mirabilis clinical isolates. Methods and results Antibiotic susceptibility testing revealed fourteen MDR strains, which showed high resistance to most β-lactams and trimethoprim/sulfamethoxazole, and a lesser extent to quinolones. All the MDR strains were sensitive to carbapenems (except imipenem), ceftazidime, and amikacin, and most of them were also sensitive to aminoglycosides. The obtained MDR isolates were sequenced using an Illumina HiSeq. The core genome-based phylogenetic tree reveals the high genetic diversity of these MDR P. mirabilis isolates and highlights the possibility of clonal spread of them across China. Mobile genetic elements SXT/R391 ICEs were commonly (10/14) detected in these MDR P. mirabilis strains, whereas the presence of resistance island PmGRI1 and plasmid was sporadic. All ICEs except for ICEPmiChn31006 carried abundant antimicrobial resistance genes (ARGs) in the HS4 region, including the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-65. ICEPmiChn31006 contained the sole ARG blaCMY-2 and was nearly identical to the global epidemic ICEPmiJpn1. The findings highlight the important roles of ICEs in mediating the spread of ARGs in P. mirabilis strains. Additionally, these MDR P. mirabilis strains have great virulence potential as they exhibited significant virulence-related phenotypes including strong crystalline biofilm, hemolysis, urease production, and robust swarming motility, and harbored abundant virulence genes. Conclusion In conclusion, the prevalence of MDR P. mirabilis with high virulence potential poses an urgent threat to public health. Intensive monitoring is needed to reduce the incidence of infections by MDR P. mirabilis.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Fu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Zeng
- Department of Clinical Laboratory, The Hejiang People’s hospital, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol 2023; 13:1178547. [PMID: 37469601 PMCID: PMC10352792 DOI: 10.3389/fcimb.2023.1178547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
13
|
Gmiter D, Pacak I, Nawrot S, Czerwonka G, Kaca W. Genomes comparison of two Proteus mirabilis clones showing varied swarming ability. Mol Biol Rep 2023; 50:5817-5826. [PMID: 37219671 PMCID: PMC10290045 DOI: 10.1007/s11033-023-08518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Proteus mirabilis is a Gram-negative bacteria most noted for its involvement with catheter-associated urinary tract infections. It is also known for its multicellular migration over solid surfaces, referred to as 'swarming motility'. Here we analyzed the genomic sequences of two P. mirabilis isolates, designated K38 and K39, which exhibit varied swarming ability. METHODS AND RESULTS The isolates genomes were sequenced using Illumina NextSeq sequencer, resulting in about 3.94 Mbp, with a GC content of 38.6%, genomes. Genomes were subjected for in silico comparative investigation. We revealed that, despite a difference in swarming motility, the isolates showed high genomic relatedness (up to 100% ANI similarity), suggesting that one of the isolates probably originated from the other. CONCLUSIONS The genomic sequences will allow us to investigate the mechanism driving this intriguing phenotypic heterogeneity between closely related P. mirabilis isolates. Phenotypic heterogeneity is an adaptive strategy of bacterial cells to several environmental pressures. It is also an important factor related to their pathogenesis. Therefore, the availability of these genomic sequences will facilitate studies that focus on the host-pathogen interactions during catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Dawid Gmiter
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Ilona Pacak
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Sylwia Nawrot
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
14
|
Sun L, He J, Shi X, Hu L, Yin Y, Yu Y, Hua X. Genotypic characterization of a Proteus mirabilis strain harboring bla KPC-2 on the IncN plasmid isolated from a patient with bloodstream infection in China. J Infect Public Health 2023; 16:1033-1036. [PMID: 37182289 DOI: 10.1016/j.jiph.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Carbapenemase is the predominant enzyme in the mechanism leading to Enterobacterales resistance to carbapenems, and the rapid spread of the blaKPC gene is a major public health concern. Here, we describe a carbapenem-resistant Proteus mirabilis strain XH983, which harbored a blaKPC-2-producing IncN plasmid, isolated from a bloodstream infection. METHODS Whole-genome sequencing and bioinformatics analysis were performed to assess the genetic environment of P. mirabilis XH983. Conjugation and transfer experiments were performed and the corresponding strains were confirmed by antimicrobial susceptibility testing. Phylogenetic and comparative genomic analysis were performed to explore the characteristics of carbapenem-resistant P. mirabilis isolates worldwide. RESULTS P. mirabilis XH983 was isolated from the blood of a patient in Hangzhou, China. The genome of XH983 contained one 4128,916 bp circular chromosome and one 24,225 bp IncN plasmid harboring blaKPC-2. P. mirabilis XH983 had multiple resistance genes, conferring resistance to aminoglycosides [aph(3')-Ia, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, aadA5, aadA1], β-lactams (blaKPC-2, blaTEM-1B), phenicol (cat, catA1), sulphonamide/trimethoprim (drfA1, drfA17, sul1, sul2) and tetracycline [tet(J)]. The phylogenetic tree showed that XH983 was present in a cluster of 30 isolates, all of which carried blaKPC-2 and most of them came from the same hospital as XH983, indicating the clonal spread of the cluster. CONCLUSION We characterized carbapenem-resistant P. mirabilis clinical isolate XH983. The genome sequence of P. mirabilis XH983 provides information about resistance mechanisms of P. mirabilis carrying the blaKPC-2 plasmid and the potential spread of blaKPC-2.
Collapse
Affiliation(s)
- Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou 310051, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyan Shi
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou 310051, Zhejiang, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hospital of Zhejiang people's armed police (PAP), Hangzhou, Zhejiang, China
| | - Yiping Yin
- Department of Hospital-acquired infection control, Hospital of Zhejiang people's armed police (PAP), Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, Jiang Y, Du X, Zhou Z, Yu Y. A Novel CMY Variant Confers Transferable High-Level Resistance to Ceftazidime-Avibactam in Multidrug-Resistant Escherichia coli. Microbiol Spectr 2023; 11:e0334922. [PMID: 36786629 PMCID: PMC10100771 DOI: 10.1128/spectrum.03349-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Here, our objective was to explore the molecular mechanism underlying ceftazidime-avibactam resistance in a novel CMY-178 variant produced by the clinical Escherichia coli strain AR13438. The antibiotic susceptibility of the clinical isolate, its transconjugants, and its transformants harboring transferable blaCMY were determined by the agar dilution method. S1-PFGE, cloning experiments, and whole-genome sequencing (WGS) were performed to investigate the molecular characteristics of ceftazidime-avibactam resistance genes. Kinetic parameters were compared among the purified CMY variants. Structural modeling and molecular docking were performed to assess the affinity between the CMYs and drugs. The horizontal transferability of the plasmid was evaluated by a conjugation experiment. The fitness cost of the plasmid was analyzed by determining the maximal growth rate, the maximum optical density at 600 nm (OD600), and the duration of the lag phase. AR13438, a sequence type 457 E. coli strain, was resistant to multiple cephalosporins, piperacillin-tazobactam, and ceftazidime-avibactam at high levels and was susceptible to carbapenems. WGS and cloning experiments indicated that a novel CMY gene, blaCMY-178, was responsible for ceftazidime-avibactam resistance. Compared with the closely related CMY-172, CMY-178 had a nonsynonymous amino acid substitution at position 70 (Asn70Thr). CMY-178 increased the MICs of multiple cephalosporins and ceftazidime-avibactam compared with CMY-172. The kinetic constant Ki values of CMY-172 and CMY-178 against tazobactam were 2.12 ± 0.34 and 2.49 ± 0.51 μM, respectively. Structural modeling and molecular docking indicated a narrowing of the CMY-178 ligand-binding pocket and its entrance and a stronger positive charge at the pocket entrance compared with those observed with CMY-172. blaCMY-178 was located in a 96.9-kb IncI1-type plasmid, designated pAR13438_2, which exhibited high transfer frequency without a significant fitness cost. In conclusion, CMY-178 is a novel CMY variant that mediates high-level resistance to ceftazidime-avibactam by enhancing the ability to hydrolyze ceftazidime and reducing the affinity for avibactam. Notably, blaCMY-178 could be transferred horizontally at high frequency without fitness costs. IMPORTANCE Ceftazidime-avibactam is a novel β-lactam-β-lactamase inhibitor (BLBLI) combination with powerful activity against Enterobacterales isolates producing AmpC, such as CMY-like cephalosporinase. However, in recent years, CMY variants have been reported to confer ceftazidime-avibactam resistance. We reported a novel CMY variant, CMY-178, that confers high-level ceftazidime-avibactam resistance with potent transferability. Therefore, this resistance gene is a tremendous potential menace to public health and needs attention of clinicians.
Collapse
Affiliation(s)
- Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Tian C, Xing M, Zhao Y, Fan X, Bai Y, Fu L, Wang S. Whole genome sequencing of OXA-232-producing wzi93-KL112-O1 carbapenem-resistant Klebsiella pneumoniae in human bloodstream infection co-harboring chromosomal ISEcp1-based blaCTX-M-15 and one rmpA2-associated virulence plasmid. Front Cell Infect Microbiol 2022; 12:984479. [PMID: 36250056 PMCID: PMC9560801 DOI: 10.3389/fcimb.2022.984479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives To characterize one OXA-232-producing wzi93-KL112-O1 carbapenem-resistant Klebsiella pneumoniae (CRKP) co-harboring chromosomal blaCTX-M-15 and one rmpA2-associated virulence plasmid. Methods Minimum inhibitory concentrations (MICs) were measured via broth microdilution method. Conjugation, chemical transformation, string test and Galleria mellonella infection model experiments were also conducted. Whole-genome sequencing (WGS) was performed on the Illumina and Nanopore platforms. Antimicrobial resistance determinants were identified using ABRicate program with ResFinder database. Insertion sequences (ISs) were identified using ISfinder. Bacterial virulence factors were identified using virulence factor database (VFDB). Wzi, capsular polysaccharide (KL) and lipoolygosaccharide (OCL) were analyzed using Kleborate with Kaptive. Phylogenetic analysis of 109 ST15 K. pneumoniae strains was performed using core genome multilocus sequence typing (cgMLST) on the Ridom SeqSphere+ server. MLST, replicons type, SNP strategies and another cgMLST analysis for 45 OXA-232-producing K. pneumoniae strains were further conducted using BacWGSTdb server. Results K. pneumoniae KPTCM strain belongs to ST15 with wzi93, KL112 and O1. It possessed a multidrug-resistant (MDR) profile and was resistant to carbapenems (meropenem and ertapenem), ciprofloxacin and amikacin. Virulence assays demonstrated KPTCM strain possesses a low virulence phenotype. WGS revealed it contained one circular chromosome and nine plasmids. The carbapenemase-encoding gene blaOXA-232 was located in a 6141-bp ColKP3-type non-conjugative plasmid and flanked by ΔISEcp1 and ΔlysR-ΔereA. Interestingly, blaCTX-M-15 was located in the chromosome mediated by ISEcp1-based transposon Tn2012. Importantly, it harbored a rmpA2-associated pLVPK-like virulence plasmid with iutA-iucABCD gene cluster and one IS26-mediated MDR fusion plasmid according to 8-bp (AGCTGCAC or GGCCTTTG) target site duplications (TSD). Based on the cgMLST and SNP analysis, data showed OXA-232-producing ST15 K. pneumoniae isolates were mainly isolated from China and have evolved in recent years. Conclusions Early detection of CRKP strains carrying chromosomal blaCTX-M-15, OXA-232 carbapenemase and pLVPK-like virulence plasmid is recommended to avoid the extensive spread of this high-risk clone.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
- *Correspondence: Siwei Wang, ; Liping Fu,
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- *Correspondence: Siwei Wang, ; Liping Fu,
| |
Collapse
|
17
|
Xia S, Wang W, Cheng J, Zhang T, Xia Z, Zhao X, Han Y, Li Y, Shi X, Qin S. Emergence of a novel hybrid mcr-1-bearing plasmid in an NDM-7-producing ST167 Escherichia coli strain of clinical origin. Front Microbiol 2022; 13:950087. [PMID: 36090088 PMCID: PMC9449459 DOI: 10.3389/fmicb.2022.950087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Colistin is considered as an antibiotic of ‘last resort’ for the treatment of lethal infections caused by carbapenem-resistant Enterobacterales (CRE), dissemination of plasmid-borne colistin resistance gene mcr-1, particularly into CRE, resulting in the emergence of strains that approach pan-resistance. A wide variety of plasmid types have been reported for carrying mcr-1. Among which, large IncHI2-type plasmids were multidrug-resistant (MDR) plasmids harbored multiple resistance determinants in addition to mcr-1. Herein, we characterized a novel hybrid IncHI2-like mcr-1-bearing plasmid in an NDM-7-producing ST167 Escherichia coli strain EC15-50 of clinical origin. Antimicrobial susceptibility testing showed E. coli EC15-50 exhibited an extensively drug-resistant (XDR) profile that only susceptible to amikacin and tigecycline. S1-PFGE, Southern hybridization and Whole-genome Sequencing (WGS) analysis identified a 46,161 bp blaNDM-7-harboring IncX3 plasmid pEC50-NDM7 and a 350,179 bp mcr-1-bearing IncHI2/HI2A/N/FII/FIA plasmid pEC15-MCR-50 in E. coli EC15-50. Sequence detail analysis revealed the type IV coupling protein (T4CP) gene was absent on pEC15-MCR-50, explaining that pEC15-MCR-50 was a non-conjugative plasmid. Comparative genetic analysis indicated the hybrid plasmid pEC15-MCR-50 was probably originated from pXGE1mcr-like IncHI2/HI2A/N plasmid and pSJ_94-like IncFII/FIA plasmid, and generated as a result of a replicative transposition process mediated by IS26. Currently, the prevalent mcr-1-carrying IncHI2 plasmids were rarely reported to be fused with other plasmids. The identification of the novel hybrid plasmid pEC15-MCR-50 in this study highlighted the importance of close surveillance for the emergence and dissemination of such fusion MDR plasmids, particularly in NDM-producing Enterobacterales.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Medical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Wei Wang
- Department of Medical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Ziwei Xia
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Yungang Han
- Department of Medical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yonghong Li,
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Xiufang Shi,
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
- Shangshang Qin,
| |
Collapse
|
18
|
Li Y, Liu Q, Qiu Y, Fang C, Zhou Y, She J, Chen H, Dai X, Zhang L. Genomic characteristics of clinical multidrug-resistant Proteus isolates from a tertiary care hospital in southwest China. Front Microbiol 2022; 13:977356. [PMID: 36090113 PMCID: PMC9449695 DOI: 10.3389/fmicb.2022.977356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant (MDR) Proteus, especially those strains producing extended-spectrum β-lactamases (ESBL) and carbapenemases, represents a major public health concern. In the present work, we characterized 27 MDR Proteus clinical isolates, including 23 Proteus mirabilis, three Proteus terrae, and one Proteus faecis, by whole-genome analysis. Among the 27 isolates analyzed, SXT/R391 ICEs were detected in 14 strains, and the complete sequences of nine ICEs were obtained. These ICEs share a common backbone structure but also have different gene contents in hotspots and variable regions. Among them, ICEPmiChn2826, ICEPmiChn2833, ICEPmiChn3105, and ICEPmiChn3725 contain abundant antibiotic resistance genes, including the ESBL gene blaCTX-M-65. The core gene phylogenetic analysis of ICEs showed their genetic diversity, and revealed the cryptic dissemination of them in Proteus strains from food animals and humans on a China-wide scale. One of the isolates, FZP3105, acquired an NDM-1-producing MDR plasmid, designated pNDM_FZP3105, which is a self-transmissible type 1/2 hybrid IncC plasmid. Analysis of the genetic organization showed that pNDM_FZP3105 has two novel antibiotic resistance islands bearing abundant antibiotic resistance genes, among which blaNDM-1 is located in a 9.0 kb ΔTn125 bracketed by two copies of IS26 in the same direction. In isolates FZP2936 and FZP3115, blaKPC-2 was detected on an IncN plasmid, which is identical to the previously reported pT211 in Zhejiang province of China. Besides, a MDR genomic island PmGRI1, a variant of PmGRI1-YN9 from chicken in China, was identified on their chromosome. In conclusion, this study demonstrates abundant genetic diversity of mobile genetic elements carrying antibiotic resistance genes, especially ESBL and carbapenemase genes, in clinical Proteus isolates, and highlights that the continuous monitoring on their transmission and further evolution is needed.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Liu
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yungang Zhou
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Junping She
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- Xiaoyi Dai,
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Luhua Zhang,
| |
Collapse
|
19
|
Pedraza R, Kieffer N, Guzmán-Puche J, Artacho MJ, Pitart C, Hernández-García M, Vila J, Cantón R, Martinez-Martinez L. Hidden dissemination of carbapenem-susceptible OXA-48-producing Proteus mirabilis. J Antimicrob Chemother 2022; 77:3009-3015. [PMID: 35971566 DOI: 10.1093/jac/dkac267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To detect a potential hidden dissemination of the blaOXA-48 gene among Proteus mirabilis isolates obtained from a single centre. METHODS P. mirabilis from diverse clinical samples presenting an ESBL phenotype or obtained from blood cultured from 2017 to 2019 were evaluated. Bacterial identification was performed using MALDI-TOF MS. MICs were determined using International Organization for Standardization (ISO) standard microdilution and interpreted following EUCAST guidelines. WGS was performed using both short- and long-read technologies and assemblies were done using Unicycler. Resistomes were assessed using the ResFinder database. SNPs were detected using the PATRIC bioinformatics platform. Cloning experiments were performed using the pCRII-TOPO cloning kit. RESULTS Thirty-one out of 108 (28.7%) isolates were positive for blaOXA-48 and blaCTX-M-15. Twenty-nine out of 31 of the isolates were susceptible to temocillin, piperacillin/tazobactam, ertapenem and meropenem, whereas only 2/31 showed a resistance phenotype against these antibiotics. Both blaOXA-48 and blaCTX-M-15 genes were detected within the same chromosomally integrated new transposon in all isolates. The resistant isolates displayed a single mutation located in the putative promoter upstream of blaOXA-48. Cloning experiments confirmed that the mutation was responsible for the resistance phenotype. CONCLUSIONS The presence of a chromosomal copy of blaOXA-48 did not confer resistance to carbapenems, but a single mutation in the promoter could lead to an increase in resistance. This study shows a hidden circulation of OXA-48-positive, but carbapenem- and piperacillin/tazobactam-susceptible, P. mirabilis isolates that can become resistant to β-lactams after a single mutation.
Collapse
Affiliation(s)
- Rosa Pedraza
- Unit of Microbiology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Nicolas Kieffer
- Molecular Basis of Adaptation, Department of Animal Health and VISAVET, University Complutense of Madrid, Madrid, Spain
| | - Julia Guzmán-Puche
- Unit of Microbiology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Artacho
- Unit of Microbiology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Cristina Pitart
- Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institute of Global Health of Barcelona, Barcelona, Spain
| | - Marta Hernández-García
- Ramon y Cajal University Hospital, Madrid, Spain.,Ramón y Cajal Institute for Health Research, Madrid, Spain
| | - Jordi Vila
- Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institute of Global Health of Barcelona, Barcelona, Spain
| | - Rafael Cantón
- Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Ramon y Cajal University Hospital, Madrid, Spain.,Ramón y Cajal Institute for Health Research, Madrid, Spain
| | - Luis Martinez-Martinez
- Unit of Microbiology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Spanish Network for Research in Infectious Diseases (REIPI) and CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Agricultural Chemistry, Soil Science and Microbiology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
20
|
Epidemiological Characteristics of OXA-232-Producing Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated during Nosocomial Clonal Spread Associated with Environmental Colonization. Microbiol Spectr 2022; 10:e0257221. [PMID: 35730968 PMCID: PMC9430510 DOI: 10.1128/spectrum.02572-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here, a program was designed to surveil the colonization and associated infection of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) (OXA-232-CRKP) in an intensive care unit (ICU) and to describe the epidemiological characteristics during surveillance. Samples were sourced from patient and environment colonization sites in the ICU from August to December 2019. During the surveillance, 106 OXA-232-CRKP strains were isolated from 8,656 samples of colonization sites, with an average positive rate of 1.22%. The rate from patient colonization sites was 3.59% (60/1,672 samples), over 5 times higher than that of the environment (0.66% [46/6,984 samples]). Rectal swabs and ventilator-related sites had the highest positive rates among patient and environment colonization sites, respectively. Six of the 15 patients who had OXA-232-CRKP at colonization sites suffered from OXA-232-CRKP-related infections. Patients could obtain OXA-232-CRKP from the environment, while long-term patient colonization was mostly accompanied by environmental colonization with subsequent infection. Antimicrobial susceptibility testing presented similar resistance profiles, in which all isolates were resistant to ertapenem but showed different levels of resistance to meropenem and imipenem. Whole-genome sequencing and single-nucleotide polymorphism (SNP) analysis suggested that all OXA-232-CRKP isolates belonged to the sequence type 15 (ST15) clone and were divided into two clades with 0 to 45 SNPs, sharing similar resistance genes, virulence genes, and plasmid types, indicating that the wide dissemination of OXA-232-CRKP between the environment and patients was due to clonal spread. The strains all contained β-lactam resistance genes, including blaOXA-232, blaCTX-M-15, and blaSHV-106, and 75.21% additionally carried blaTEM-1. In brief, wide ST15 clonal spread and long-term colonization of OXA-232-CRKP between patients and the environment were observed, with microevolution and subsequent infection. IMPORTANCE OXA-232 is a variant of OXA-48 carbapenemase, which has been increasingly reported in nosocomial outbreaks in ICUs. However, the OXA-232-CRKP transmission relationship between the environment and patients in ICUs was still not clear. Our study demonstrated the long-term colonization of OXA-232-CRKP in the ICU environment, declared that the colonization was a potential risk to ICU patients, and revealed the possible threat that this OXA-232-CRKP clone would bring to public health. The wide dissemination of OXA-232-CRKP between the environment and patients was due to ST15 clonal spread, which presented a multidrug-resistant profile and carried disinfectant resistance genes and virulence clusters, posing a challenge to infection control. The study provided a basis for environmental disinfection, including revealing common environmental colonization sites of OXA-232-CRKP and suggesting appropriate usage of disinfectants to prevent the development of disinfectant resistance.
Collapse
|
21
|
Moran RA, Liu H, Doughty EL, Hua X, Cummins EA, Liveikis T, McNally A, Zhou Z, van Schaik W, Yu Y. GR13-type plasmids in Acinetobacter potentiate the accumulation and horizontal transfer of diverse accessory genes. Microb Genom 2022; 8. [PMID: 35731562 PMCID: PMC9455709 DOI: 10.1099/mgen.0.000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carbapenem and other antibiotic resistance genes (ARGs) can be found in plasmids in Acinetobacter, but many plasmid types in this genus have not been well-characterized. Here we describe the distribution, diversity and evolutionary capacity of rep group 13 (GR13) plasmids that are found in Acinetobacter species from diverse environments. Our investigation was prompted by the discovery of two GR13 plasmids in A. baumannii isolated in an intensive care unit (ICU). The plasmids harbour distinct accessory genes: pDETAB5 contains blaNDM-1 and genes that confer resistance to four further antibiotic classes, while pDETAB13 carries putative alcohol tolerance determinants. Both plasmids contain multiple dif modules, which are flanked by pdif sites recognized by XerC/XerD tyrosine recombinases. The ARG-containing dif modules in pDETAB5 are almost identical to those found in pDETAB2, a GR34 plasmid from an unrelated A. baumannii isolated in the same ICU a month prior. Examination of a further 41 complete, publicly available plasmid sequences revealed that the GR13 pangenome consists of just four core but 1186 accessory genes, 123 in the shell and 1063 in the cloud, reflecting substantial capacity for diversification. The GR13 core genome includes genes for replication and partitioning, and for a putative tyrosine recombinase. Accessory segments encode proteins with diverse putative functions, including for metabolism, antibiotic/heavy metal/alcohol tolerance, restriction-modification, an anti-phage system and multiple toxin–antitoxin systems. The movement of dif modules and actions of insertion sequences play an important role in generating diversity in GR13 plasmids. Discrete GR13 plasmid lineages are internationally disseminated and found in multiple Acinetobacter species, which suggests they are important platforms for the accumulation, horizontal transmission and persistence of accessory genes in this genus.
Collapse
Affiliation(s)
- Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Emma L Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tomas Liveikis
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, PR China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, PR China
| |
Collapse
|
22
|
Ling Z, Wang S. Editorial: New Insights Into the Transmission Dynamics and Control of Antimicrobial Resistance to Last-Resort Antibiotics. Front Microbiol 2022; 13:914978. [PMID: 35663900 PMCID: PMC9159295 DOI: 10.3389/fmicb.2022.914978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhuoren Ling
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Shaolin Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shaolin Wang
| |
Collapse
|
23
|
A Small KPC-2-Producing Plasmid in Klebsiella pneumoniae: Implications for Diversified Vehicles of Carbapenem Resistance. Microbiol Spectr 2022; 10:e0268821. [PMID: 35579474 PMCID: PMC9241637 DOI: 10.1128/spectrum.02688-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The convergence of hypervirulence to carbapenem-resistant K. pneumoniae (CRKP) in a highly transmissible ST11 clone poses a great challenge to public health and anti-infection therapy. Recently, we revealed that an expanding repertoire of diversified KPC-2-producing plasmids occurs in these high-risk clones. Here, we report a clinical case infected with a rare isolate of ST437 CRKP, K186, which exhibited KPC-2 production. Apart from its 5,322,657-bp long chromosome, whole-genome sequencing of strain K186 elucidated three distinct resistance plasmids (designated pK186_1, pK186_2, and pK186_KPC, respectively). Unlike the prevalently larger form of KPC-2-producing plasmids (~120 to ~170 kb) earlier we observed, pK186_KPC is an IncN-type, small plasmid of 26,012bp in length. Combined with the colinear alignment of plasmid genome, the analyses of insertion sequences further suggested that this carbapenem-resistant pK186_KPC might arise from the cointegration of its ancestral IncN and IncFII plasmids, exclusively relying on IS26-based transposition events. Taken together, the result represents an unusual example of blaKPC-2-bearing small plasmids, and highlights an ongoing arsenal of diversified carriers benefiting the transferability of KPC-2 carbapenem resistance. IMPORTANCE A rare ST437 isolate termed K186 was clinically determined which was unlike ST11, the dominant sequence type of CRKP. Whole-genome sequencing enabled us to discover three distinct resistance plasmids, namely, pK186_1, pK186_2, and pK186_KPC. Among them, pK186_KPC appears as a unique plasmid ~26 kb in size, much smaller than the prevalent forms (~120 to ~170 kb). Intriguingly, genetic analysis suggests that it might originate from Proteus mirabilis. This result constitutes an additional example of differentiated plasmid vehicles dedicated to the emergence and dissemination of KPC-2 carbapenem resistance.
Collapse
|
24
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
25
|
Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. mSystems 2022; 7:e0101921. [PMID: 35103490 PMCID: PMC8805638 DOI: 10.1128/msystems.01019-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like blaDIM-1, and novel variants, including blaVIM-71, blaCARB-53, and blaCMY-172, were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, blaNDM-1, blaCTX-M-15, and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health.
Collapse
|
26
|
Fine-Scale Reconstruction of the Evolution of FII-33 Multidrug Resistance Plasmids Enables High-Resolution Genomic Surveillance. mSystems 2022; 7:e0083121. [PMID: 35040701 PMCID: PMC8765060 DOI: 10.1128/msystems.00831-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined 185 complete, publicly available FII-33 plasmid sequences, characterizing their backbone and various insertions. The variable characteristic insertions facilitated evolutionary reconstruction for this plasmid group, beginning with the acquisition of a primary resistance region (PRR) over 10 years ago. FII-33 plasmids have evolved by acquiring additional resistance genes in the PRR via translocatable elements and by forming cointegrates with plasmids of other types. In all cases, IS26 is suspected to have mediated cointegration. Plasmid cointegration has contributed to the accumulation of resistance genes and may have increased the transmissibility, stability, and host range of the original FII-33 lineage. A particularly important sublineage was formed by a replicative IS26 cointegration event that fused an FII-33 plasmid with a blaKPC-2-containing R-type plasmid, interrupting the FII-33 traI gene encoding the conjugative relaxase. The FII-33:R cointegrate arose in the Klebsiella pneumoniae ST11 clone and remains largely confined there due to the abolition of transfer ability by the FII-33:R cointegration event. However, in some cases FII-33:R cointegrates have fused with additional plasmids and acquired complete transfer regions or oriT sequences that might restore their ability to transfer horizontally. Cointegration events across FII-33 plasmid sublineages have involved plasmids of at least 15 different types. This suggests that plasmid cointegration occurs readily and is more common than previously appreciated, raising questions about the effects of cointegrate formation on plasmid host range, stability, and capacity for horizontal transfer. Resources are provided for detecting and characterizing FII-33 plasmid sublineages from complete or draft genome sequences. IMPORTANCE Effective genomic surveillance of antibiotic-resistant bacterial pathogens must consider plasmids, which are frequently implicated in the accumulation and transfer of resistance genes between bacterial strains or species. However, the evolution of plasmids is complex, and simple typing or comparison tools cannot accurately determine whether plasmids belong to the same sublineages. This precludes precise tracking of plasmid movement in bacterial populations. We have examined the FII-33 group, which has been associated with multidrug resistance and particularly carbapenem resistance in clinically significant members of the Enterobacterales in China. Our analysis has provided insight into the evolution of this important plasmid group, allowing us to develop resources for rapidly typing them to the sublineage level in complete or draft genome sequences. Our approach will improve detection and characterization of FII-33 plasmids and facilitate surveillance within and outside China. The approach can serve as a model for similar studies of other plasmid types.
Collapse
|
27
|
Structural Diversity, Fitness Cost, and Stability of a BlaNDM-1-Bearing Cointegrate Plasmid in Klebsiella pneumoniae and Escherichia coli. Microorganisms 2021; 9:microorganisms9122435. [PMID: 34946035 PMCID: PMC8708245 DOI: 10.3390/microorganisms9122435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cointegrate/hybrid plasmids combine the genetic elements of two or more plasmids and generally carry abundant antimicrobial resistance determinants. Hence, the spread of cointegrate plasmids will accelerate the transmission of AMR genes. To evaluate the transmission risk caused by cointegrate plasmids, we investigated the structural diversity, fitness cost, and stability of a cointegrate plasmid in Klebsiella pneumoniae YZ6 and Escherichia coli EC600. The cointegrate plasmid pSL131_IncA/C_IncX3 was from a clinical Salmonella Lomita strain. After transferring the plasmid into E. coli EC600 by conjugation, we observed plasmids with different structures, including a full-length original plasmid and two truncated versions. By contrast, DNA fragment deletion and blaCTX-M-14 gene insertion in the plasmid were detected in a transconjugant derived from K. pneumoniae YZ6. These results suggest that the structure of the plasmid was unstable during conjugation. Furthermore, both the full-length plasmid in EC600 and the structurally reorganized plasmid in YZ6 imposed a fitness cost on the bacterial host and enhanced biofilm formation ability. Serial passaging in antibiotic-free medium resulted in a rapid decline of the plasmid in YZ6. However, the stability of the structurally reorganized plasmid in YZ6 was improved via serial passaging in antibiotic-containing medium. SNP calling revealed that mutations of the outer membrane porin may play an essential role in this process. These findings indicate that structural versatility could contribute to the dissemination of cointegrate plasmids. Although the plasmid incurred a fitness cost in other Enterobacteriaceae species, positive selection could alleviate the adverse effects.
Collapse
|
28
|
Li R, Zhou M, Lu J, Wei J. Antibiofilm Effects of Epigallocatechin Gallate Against Proteus mirabilis Wild-Type and Ampicillin-Induced Strains. Foodborne Pathog Dis 2021; 19:136-142. [PMID: 34726503 DOI: 10.1089/fpd.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with nosocomial infections and foodborne diseases. The resistance and biofilm formation of P. mirabilis have been a great concern. In this study a multidrug-resistant P. mirabilis strain 012 was exposed to a lethal dose of ampicillin (10 mg/mL, 2.5-fold minimal bactericidal concentration) for 24 h at 37°C. After resuscitation and isolation, five variant isolates were selected and subjected to ampicillin induction by repeatedly streaking on ampicillin-containing plates (10 mg/mL) for at least three times. In biofilm formation assays by using crystal violet staining, we found that the variant strains had enhanced biofilm-forming abilities. (-)-epigallocatechin-3-gallate (EGCG) at a minimum inhibitory concentration (MIC) (256 μg/mL) significantly reduced the biofilm formation of all variant strains and the wild-type strain (p < 0.01). Sub-MIC of EGCG (128 μg/mL) suppressed the biofilms of wild-type and two variants. However, it stimulated the biofilms of the other three variants. The antibiofilm effects of EGCG against the wild-type strain were further confirmed by confocal laser scanning microscopy. Scanning electron microscopy revealed that EGCG induced variants to form more fibrous structures. Our results revealed that a lethal dose of antibiotic exposure increased antibiotic resistance and biofilm formation of P. mirabilis. EGCG may be used as a promising antibiofilm agent to prevent the P. mirabilis biofilm formation in the food industry. However, the sub-MIC of EGCG is not effective and will not be applied.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jieyuan Lu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jiajun Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
A Novel SXT/R391 Integrative and Conjugative Element Carries Two Copies of the blaNDM-1 Gene in Proteus mirabilis. mSphere 2021; 6:e0058821. [PMID: 34378988 PMCID: PMC8386438 DOI: 10.1128/msphere.00588-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid spread of the blaNDM-1 gene is a major public health concern. Here, we describe the multidrug-resistant Proteus mirabilis strain XH1653, which contains a novel SXT/R391 integrative and conjugative element (ICE), harboring two tandem copies of blaNDM-1 and 21 other resistance genes. XH1653 was resistant to all antibiotics tested, apart from aztreonam. Whole-genome data revealed that two copies of blaNDM-1 embedded in the ISCR1 element are located in HS4 of the novel ICE, which we named ICEPmiChnXH1653. A circular intermediate of ICEPmiChnXH1653 was detected by PCR, and conjugation experiments showed that the ICE can be transferred to the Escherichia coli strain EC600 with frequencies of 1.5 × 10-7. In the recipient strain, the ICE exhibited a higher excision frequency and extrachromosomal copy number than the ICE in the donor strain. We also observed that the presence of ICEPmiChnXH1653 has a negative impact on bacterial fitness and leads to changes in the transcriptome of the host. In vitro evolution experiments under nonselective conditions showed that the two tandem copies of the ISCR1 element and the ISVsa3 element can be lost during repeated laboratory passage. This is the first report of a novel SXT/R391 ICE carrying two tandem copies of blaNDM-1, which also illustrates the role that ICEs may play as platforms for the accumulation and transmission of antibiotic resistance genes. IMPORTANCE The occurrence of carbapenemase-producing Proteus mirabilis, especially those strains producing NDM-1 and its variants, is a major public health concern worldwide. The integrative conjugative element (ICE) plays an important role in horizontal acquisition of resistance genes. In this study, we characterized a novel SXT/R391 ICE from a clinical P. mirabilis isolate that we named ICEPmiChnXH1653, which contains two tandem copies of the carbapenemase gene blaNDM-1. We performed an integrative approach to gain insights into different aspects of ICEPmiChnXH1653 evolution and biology and observed that ICEPmiChnXH1653 obtained the carbapenemase gene blaNDM-1 by ISCR1-mediated homologous recombination. Our study reveals that the transmission of blaNDM-1 by ISCR1 elements or ICEs may be an important contributor to the carbapenem resistance development across species, which could improve our understanding of horizontal gene transfer in clinical environments.
Collapse
|
30
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
31
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
32
|
Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA 2021; 12:11. [PMID: 33757578 PMCID: PMC7986276 DOI: 10.1186/s13100-021-00239-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
The IS6 family of bacterial and archaeal insertion sequences, first identified in the early 1980s, has proved to be instrumental in the rearrangement and spread of multiple antibiotic resistance. Two IS, IS26 (found in many enterobacterial clinical isolates as components of both chromosome and plasmids) and IS257 (identified in the plasmids and chromosomes of gram-positive bacteria), have received particular attention for their clinical impact. Although few biochemical data are available concerning the transposition mechanism of these elements, genetic studies have provided some interesting observations suggesting that members of the family might transpose using an unexpected mechanism. In this review, we present an overview of the family, the distribution and phylogenetic relationships of its members, their impact on their host genomes and analyse available data concerning the particular transposition pathways they may use. We also provide a mechanistic model that explains the recent observations on one of the IS6 family transposition pathways: targeted cointegrate formation between replicons.
Collapse
Affiliation(s)
- Alessandro Varani
- School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, Sao Paulo, Brazil
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Patricia Siguier
- Centre de Biologie Intégrative-Université Paul SABATIER, CNRS - Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 - bât. CNRS-IBCG, Toulouse, France
| | - Karen Ross
- Protein Information Resource, Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Chandler
- Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
33
|
Wang J, Wang ZY, Wang Y, Sun F, Li W, Wu H, Shen PC, Pan ZM, Jiao X. Emergence of 16S rRNA Methylase Gene rmtB in Salmonella Enterica Serovar London and Evolution of RmtB-Producing Plasmid Mediated by IS 26. Front Microbiol 2021; 11:604278. [PMID: 33519749 PMCID: PMC7843705 DOI: 10.3389/fmicb.2020.604278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022] Open
Abstract
This study aimed to characterize 16S rRNA methylase genes among Salmonella and to elucidate the structure and evolution of rmtB-carrying plasmids. One hundred fifty-eight Salmonella isolates from one pig slaughterhouse were detected as containing 16S rRNA methylase genes; two (1.27%) Salmonella London isolates from slaughtered pigs were identified to carry rmtB. They were resistant to gentamicin, amikacin, streptomycin, ampicillin, tetracycline, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. The complete sequences of RmtB-producing isolates were obtained by PacBio single-molecule real-time sequencing. The isolate HA1-SP5 harbored plasmids pYUHAP5-1 and pYUHAP5-2. pYUHAP5-1 belonged to the IncFIBK plasmid and showed high similarity to multiple IncFIBK plasmids from Salmonella London in China. The rmtB-carrying plasmid pYUHAP5-2 contained a typical IncN-type backbone; the variable region comprising several resistance genes and an IncX1 plasmid segment was inserted in the resolvase gene resP and bounded by IS26. The sole plasmid in HA3-IN1 designated as pYUHAP1 was a cointegrate of plasmids from pYUHAP5-1-like and pYUHAP5-2-like, possibly mediated by IS26 via homologous recombination or conservative transposition. The structure differences between pYUHAP1 and its corresponding part of pYUHAP5-1 and pYUHAP5-2 may result from insertion, deletion, or recombination events mediated by mobile elements (IS26, ISCR1, and ISKpn43). This is the first report of rmtB in Salmonella London. IncN plasmids are efficient vectors for rmtB distribution and are capable of evolving by reorganization and cointegration. Our results further highlight the important role of mobile elements, particularly IS26, in the dissemination of resistance genes and plasmid evolution.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fan Sun
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Wang D, Mu X, Chen Y, Zhao D, Fu Y, Jiang Y, Zhu Y, Quan J, Hua X, Mao G, Li X, Yu Y. Emergence of a Clinical Escherichia coli Sequence Type 131 Strain Carrying a Chromosomal bla KPC-2 Gene. Front Microbiol 2020; 11:586764. [PMID: 33281782 PMCID: PMC7691318 DOI: 10.3389/fmicb.2020.586764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: Bacteria carrying the Klebsiella pneumoniae carbapenemase genes have rapidly spread worldwide and have become a great threat to public health. The blaKPC–2 gene has been primarily located on plasmids cocirculating in various strains. However, chromosomal integration of the blaKPC–2 gene in Escherichia coli has not been reported. In the present study, we report the detection of the first clinical strain of E. coli ST131 with a blaKPC–2 gene, which integrated in the chromosome. E. coli strain EC3385 was identified and subjected to susceptibility testing and genotyping. The complete genome sequences of this strain and four Proteus mirabilis strains were obtained. Chromosomal integration of the blaKPC–2 gene was confirmed using a combination of short- and long-read sequencing. Comparative genetic analyses were performed and the origin of the chromosomal location of the blaKPC–2 gene was further analyzed. Whole-genome sequencing revealed that strain EC3385 belonged to the ST131 type and possessed various resistance and virulence genes. Sequence analysis showed that the blaKPC–2 gene was carried in a 24-kb insertion sequence on the chromosome. This insertion sequence possessed high sequence similarity to previously reported blaKPC–2-habouring plasmids of P. mirabilis in China. To the best of our knowledge, this is the first report of a clinical ST131 E. coli strain carrying blaKPC–2 on the chromosome. The blaKPC–2 gene was probably horizontally transferred from the P. mirabilis plasmid to the E. coli chromosome by the IS26 element, indicating that P. mirabilis might be an important reservoir of blaKPC–2 gene for E. coli. Furthermore, the E. coli ST131 strain carrying the chromosomal blaKPC–2 gene could be further spread due to its carbapenem resistance and high virulence. It is imperative to perform active surveillance to prevent further dissemination of KPC-2 type carbapenemase-producing isolates.
Collapse
Affiliation(s)
- Dairong Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Blood Center of Zhejiang Province, Hangzhou, China
| | - Xinli Mu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Ying Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Ying Fu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China.,Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Yiwei Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Guofeng Mao
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| |
Collapse
|
35
|
Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020; 8:microorganisms8111775. [PMID: 33198099 PMCID: PMC7696407 DOI: 10.3390/microorganisms8111775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus mirabilis is a component of the normal intestinal microflora of humans and animals, but can cause urinary tract infections and even sepsis in hospital settings. In recent years, the number of multidrug-resistant P. mirabilis isolates, including the ones producing extended-spectrum β-lactamases (ESBLs), is increasing worldwide. However, the number of investigations dedicated to this species, especially, whole-genome sequencing, is much lower in comparison to the members of the ESKAPE pathogens group. This study presents a detailed analysis of clinical multidrug-resistant ESBL-producing P. mirabilis isolate using short- and long-read whole-genome sequencing, which allowed us to reveal possible horizontal gene transfer between Klebsiella pneumoniae and P. mirabilis plasmids and to locate the CRISPR-Cas system in the genome together with its probable phage targets, as well as multiple virulence genes. We believe that the data presented will contribute to the understanding of antibiotic resistance acquisition and virulence mechanisms for this important pathogen.
Collapse
|